Mechanotransduction and the Regulation of Skeletal Muscle Mass
机械传导和骨骼肌质量的调节
基本信息
- 批准号:9236402
- 负责人:
- 金额:$ 21.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingBed restBiochemicalBiosensorCachexiaDataDiacylglycerol KinaseEventFRAP1 geneFutureGoalsHealthHypertrophyImmobilizationKnockout MiceKnowledgeLeadLinkMaintenanceMapsMass Spectrum AnalysisMechanical StimulationMechanicsMediatingMetabolismMolecularMovementMuscular DystrophiesMyopathyOutcomePathway interactionsPhosphatidic AcidPhosphorylationPlayProcessProtein BiosynthesisProtein Synthesis InductionProteinsProteomeProteomicsPublic HealthQuality of lifeRaptorsRas homolog enriched in brainRegulationResearchRoleSignal TransductionSignaling ProteinSirolimusSkeletal MuscleStimulusSystemTSC2 geneTechniquesTestingTransfectionWorkbasedisorder preventionin vivoinhibitor/antagonistinsightlate endosomemuscle formnovelphosphoproteomicspreventprotein complexresearch studyresponseskeletaltargeted treatment
项目摘要
DESCRIPTION (provided by applicant): Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and the maintenance of muscle mass contributes significantly to disease prevention and quality of life. Although the link between mechanical signals and the regulation of muscle mass has been recognized for decades, the molecular mechanisms that drive this vital process are still not known. Hence, the long-term goal of our research is to defin the molecular events through which mechanical stimuli regulate muscle mass. In this project, we aim to identify the mechanisms via which mechanical stimuli activate signaling by the mammalian target of rapamycin (mTOR). Specifically, it is now known that mTOR can exert both rapamycin-sensitive and rapamycin-insensitive signaling events, and in this project we will focus on rapamycin-sensitive mTOR (RSmTOR) signaling. We are focusing on RSmTOR signaling because our previous work established that: i) mechanical stimuli can robustly activate RSmTOR signaling; ii) RSmTOR signaling is necessary for a mechanically-induced hypertrophic response; and iii) the activation of RSmTOR signaling, in and of itself, is sufficient to induce hypertrophy. Since mechanical stimuli activate RSmTOR signaling, it follows that a mechanotransduction pathway must exist for converting mechanical information into the biochemical events that activate RSmTOR signaling. Based on our preliminary data, we are proposing that the late endosomal / lysosomal system (LEL) is a central component of this pathway. The first three aims of this project will address this concept by testing the following hypotheses: 1) Raptor is necessary for the targeting of mTOR to the LEL and, in turn, the mechanical activation of RSmTOR signaling; 2) the mechanical activation of RSmTOR signaling is due, in part, to a diacylglycerol kinase ζ (DGKζ)-dependent increase in phosphatidic acid (PA) at the LEL; and 3) mechanical stimuli induce an increase in the phosphorylation of tuberin (TSC2), which causes it to dissociate from the LEL, and as a result, Rheb at the LEL becomes activated and stimulates RSmTOR signaling. In addition to testing these hypotheses, we will also define the extent to which Raptor, DGKζ/PA and TSC2/Rheb contribute to mechanically-induced changes in protein synthesis and the induction of hypertrophy. Importantly, through the use of advanced techniques, we will be able to test all of our hypotheses in-vivo (e.g., in-vivo transfection with biosensors, skeletal muscle specific inducible knockout mice, rescue experiments in knockout mice, etc.) Furthermore, in the last aim, we will use a state-of-the-art mass spectrometry technique (NeuCode) to globally map the mechanically-regulated proteome / phosphoproteome, and with our approach, we will be able to determine which events are mediated downstream versus upstream / parallel to the activation of RSmTOR signaling. Thus, we expect that the outcomes of this project will not only fill key gaps in our current knowledge, but they will also generate a new body of knowledge that will guide the fundamental direction of future studies that are aimed at fully defining how mechanical stimuli regulate skeletal muscle mass.
描述(由申请人提供):机械刺激在骨骼肌质量的调节中起主要作用,肌肉质量的维持对疾病预防和生活质量有显著贡献。尽管几十年来人们已经认识到机械信号和肌肉质量调节之间的联系,但驱动这一重要过程的分子机制仍然不为人所知。因此,我们研究的长期目标是确定机械刺激调节肌肉质量的分子事件。在这个项目中,我们的目标是确定机制,通过机械刺激激活哺乳动物雷帕霉素靶(mTOR)的信号。具体来说,现在已知mTOR可以发挥雷帕霉素敏感和雷帕霉素不敏感的信号事件,在这个项目中,我们将专注于雷帕霉素敏感的mTOR(RSmTOR)信号。我们专注于RSmTOR信号传导,因为我们先前的工作确定:i)机械刺激可以稳健地激活RSmTOR信号传导; ii)RSmTOR信号传导对于机械诱导的肥大反应是必需的;以及iii)RSmTOR信号传导的激活本身足以诱导肥大。由于机械刺激激活RSmTOR信号传导,因此必须存在机械转导途径,用于将机械信息转化为激活RSmTOR信号传导的生化事件。基于我们的初步数据,我们提出,晚期内体/溶酶体系统(LEL)是这一途径的核心组成部分。本项目的前三个目标将通过测试以下假设来解决这一概念:1)Raptor对于mTOR靶向LEL以及RSmTOR信号传导的机械激活是必需的; 2)RSmTOR信号传导的机械激活部分是由于LEL处磷脂酸(PA)的二酰基甘油激酶β(DGK-I)依赖性增加;和3)机械刺激诱导块茎蛋白(TSC 2)磷酸化的增加,这导致其从LEL解离,结果,LEL处的Rheb被激活并刺激RSmTOR信号传导。除了测试这些假设外,我们还将确定Raptor,DGK/PA和TSC 2/Rheb在何种程度上有助于机械诱导的蛋白质合成变化和诱导肥大。重要的是,通过使用先进的技术,我们将能够在体内测试我们所有的假设(例如,用生物传感器的体内转染、骨骼肌特异性诱导型敲除小鼠、敲除小鼠中的拯救实验等)此外,在最后一个目标中,我们将使用最先进的质谱技术(NeuCode)来全局映射机械调节的蛋白质组/磷酸化蛋白质组,并且通过我们的方法,我们将能够确定哪些事件是下游介导的,而不是上游/平行于RSmTOR信号传导的激活。因此,我们期望该项目的成果不仅将填补我们现有知识的关键空白,而且还将产生一个新的知识体系,指导未来研究的基本方向,旨在充分定义机械刺激如何调节骨骼肌质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TROY A HORNBERGER其他文献
TROY A HORNBERGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TROY A HORNBERGER', 18)}}的其他基金
Identifying the Structural Adaptations that Drive the Mechanically Induced Growth of Skeletal Muscle
确定驱动骨骼肌机械诱导生长的结构适应
- 批准号:
10711412 - 财政年份:2023
- 资助金额:
$ 21.97万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle - Re-entry Supplement
TRIM28 磷酸化在骨骼肌机械调节中的作用 - Re-entry Supplement
- 批准号:
10285337 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
10090567 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
9886717 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
10326805 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
10534822 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
10546508 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
10755032 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
Mechanotransduction and the Regulation of Skeletal Muscle Mass
机械传导和骨骼肌质量的调节
- 批准号:
9084789 - 财政年份:2015
- 资助金额:
$ 21.97万 - 项目类别:
Mechanotransduction and the Regulation of Skeletal Muscle Mass
机械传导和骨骼肌质量的调节
- 批准号:
9233014 - 财政年份:2010
- 资助金额:
$ 21.97万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 21.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 21.97万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 21.97万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 21.97万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 21.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 21.97万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 21.97万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 21.97万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 21.97万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 21.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)