Identifying the Structural Adaptations that Drive the Mechanically Induced Growth of Skeletal Muscle
确定驱动骨骼肌机械诱导生长的结构适应
基本信息
- 批准号:10711412
- 负责人:
- 金额:$ 16.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-25 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAgingAttenuatedBed restCachexiaChronicCoinDataDependenceDiseaseElectron MicroscopyElementsEquilibriumEventFoundationsFutureGoalsGrowthHypertrophyImaging TechniquesImmobilizationKnockout MiceKnowledgeLinkLocationMaintenanceMechanicsMediatingModelingMuscleMuscle functionMuscular DystrophiesMyofibrilsMyopathyNatureOutcomePhysiologicalPlayProcessProtein BiosynthesisPublic HealthQuality of lifeRadialRegulationResolutionRoleSarcomeresSeriesSignal PathwaySignal TransductionSiteSkeletal MuscleStimulusTechniquesTechnologyTestingVisualizationWeightWorkdisorder preventiongene therapyimprovedmechanical drivemechanical loadmechanical signalmechanical stimulusmouse modelmuscle formprotein degradationresistance exerciseresponseskeletal muscle growthskeletal muscle wastingtherapy development
项目摘要
Project Summary / Abstract
Mechanical signals play a major role in the regulation of skeletal muscle mass, and the maintenance of muscle
mass contributes significantly to disease prevention and quality of life. Although the link between mechanical
signals and the regulation of muscle mass has been recognized for decades, the mechanisms that control this
process remain ill-defined. For instance, most studies indicate that the mechanically induced growth of skeletal
muscle is driven by an increase in the size of the existing myofibers rather than an increase in the number of
myofibers. Moreover, current models assert that the increase in myofiber size is mediated by an increase in the
balance between the rates of protein synthesis and protein degradation which, in turn, leads to the accumulation
of newly synthesized proteins (NSPs) and the concomitant structural changes that drive the growth response.
For instance, it is well known that an increase in mechanical loading can lead to microstructural changes such
as the radial growth of myofibers. Surprisingly, however, the ultrastructural adaptations that drive these
microstructural changes have not been defined. Indeed, a number of foundationally important questions such as
whether the radial growth of myofibers is driven by an increase in the size and/or the number of myofibrils have
not been answered. Likewise, the location(s) in which NSPs accumulate during mechanically induced growth
(i.e., the sites of growth) are not known. As such, one of the major goals of this project is to fill these gaps in
knowledge. Another major goal is to develop a better understanding of the signaling events that control the
different aspects of mechanically induced growth. For instance, our previous work has established that signaling
through mTORC1 plays a central role in the process via which mechanical stimuli induce the radial growth of
myofibers. However, our preliminary data indicate that the longitudinal growth of myofibers can also make a
substantive contribution to the mechanically induced accretion of muscle mass, yet, unlike radial growth, the
longitudinal growth of myofibers does not appear to require signaling by mTORC1. In other words, our preliminary
data suggest that the radial and longitudinal growth of myofibers are regulated by distinct signaling pathways.
Specifically, we propose that the radial growth of myofibers is driven by a mTORC1-dependent mechanism that
we have coined as the “myofibril expansion cycle”, whereas the longitudinal growth of myofibers is mediated by
a mTORC1-independent mechanism that involves transverse Z-line splitting of sarcomeres at regions called
sphenodes. To test the validity of these hypotheses we will use advanced imaging techniques, various genetic
interventions, two complementary models of mechanical load-induced growth, and our new state-of-the-art
technology that enables us to visualize and quantify (with ≤10 nm resolution) where NSPs accumulate.
Collectively, it is anticipated that the outcomes of this project will not only fill major gaps in our understanding of
how mechanical stimuli regulate muscle mass, but they will also build the framework for future studies that are
aimed at developing a better understanding of this highly important process.
项目总结/摘要
机械信号在骨骼肌质量的调节和肌肉的维持中起着重要的作用
大众对预防疾病和提高生活质量作出了重大贡献。虽然机械之间的联系
信号和肌肉质量的调节已经被认识了几十年,控制这一点的机制
过程仍然不明确。例如,大多数研究表明,机械诱导的骨骼生长
肌肉是由现有肌纤维尺寸的增加而不是肌纤维数量的增加驱动的。
肌纤维此外,目前的模型断言,肌纤维大小的增加是由肌纤维的增加介导的。
蛋白质合成和蛋白质降解速率之间的平衡,这反过来又导致蛋白质的积累。
新合成的蛋白质(NSP)和随之而来的结构变化,驱动生长反应。
例如,众所周知,机械载荷的增加可导致微观结构变化,
如肌纤维的放射状生长。然而,令人惊讶的是,驱动这些细胞的超微结构适应性
微观结构的变化尚未确定。事实上,一些基本的重要问题,如
无论肌纤维的径向生长是由肌原纤维的尺寸和/或数量的增加驱动的,
没有得到答复。同样,在机械诱导生长期间NSP积累的位置
(i.e.,生长的部位)未知。因此,该项目的主要目标之一是填补这些空白,
知识另一个主要目标是更好地理解控制细胞凋亡的信号事件。
机械诱导生长的不同方面。例如,我们以前的工作已经确定,
通过mTORC 1在机械刺激诱导细胞径向生长的过程中起着核心作用。
肌纤维然而,我们的初步数据表明,肌纤维的纵向生长也可以使
实质性的贡献,机械引起的增长的肌肉质量,然而,不像径向增长,
肌纤维的纵向生长似乎不需要mTORC 1的信号传导。换句话说,我们的初步
数据表明肌纤维的径向和纵向生长受不同的信号通路调节。
具体来说,我们提出肌纤维的径向生长是由mTORC1依赖性机制驱动的,
我们创造了"肌原纤维扩张周期",而肌纤维的纵向生长是由
一种mTORC1独立机制,涉及肌节在称为
蝶骨为了验证这些假设的有效性,我们将使用先进的成像技术,
干预措施,两个互补的模型机械负荷引起的增长,和我们的新的国家的最先进的
该技术使我们能够可视化和量化(分辨率≤ 10 nm)NSP的积累。
总的来说,预计该项目的成果不仅将填补我们在理解
机械刺激如何调节肌肉质量,但他们也将为未来的研究建立框架,
旨在更好地了解这一非常重要的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TROY A HORNBERGER其他文献
TROY A HORNBERGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TROY A HORNBERGER', 18)}}的其他基金
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle - Re-entry Supplement
TRIM28 磷酸化在骨骼肌机械调节中的作用 - Re-entry Supplement
- 批准号:
10285337 - 财政年份:2020
- 资助金额:
$ 16.12万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
10090567 - 财政年份:2020
- 资助金额:
$ 16.12万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
9886717 - 财政年份:2020
- 资助金额:
$ 16.12万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
10326805 - 财政年份:2020
- 资助金额:
$ 16.12万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
10534822 - 财政年份:2020
- 资助金额:
$ 16.12万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
10546508 - 财政年份:2020
- 资助金额:
$ 16.12万 - 项目类别:
The Role of TRIM28 Phosphorylation in the Mechanical Regulation of Skeletal Muscle
TRIM28 磷酸化在骨骼肌机械调节中的作用
- 批准号:
10755032 - 财政年份:2020
- 资助金额:
$ 16.12万 - 项目类别:
Mechanotransduction and the Regulation of Skeletal Muscle Mass
机械传导和骨骼肌质量的调节
- 批准号:
9084789 - 财政年份:2015
- 资助金额:
$ 16.12万 - 项目类别:
Mechanotransduction and the Regulation of Skeletal Muscle Mass
机械传导和骨骼肌质量的调节
- 批准号:
9233014 - 财政年份:2010
- 资助金额:
$ 16.12万 - 项目类别:
Mechanotransduction and the Regulation of Skeletal Muscle Mass
机械传导和骨骼肌质量的调节
- 批准号:
9236402 - 财政年份:2010
- 资助金额:
$ 16.12万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)