Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
基本信息
- 批准号:9418599
- 负责人:
- 金额:$ 33.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAdultAlbuminuriaAlgorithmsAmericanBioinformaticsBiologicalBiological MarkersBiologyCaringCell physiologyCessation of lifeChronic DiseaseChronic Kidney FailureChronic Kidney InsufficiencyClinicalClinical TrialsCollaborationsComorbidityComplications of Diabetes MellitusComputing MethodologiesDataData SetDevelopmentDiabetes MellitusDiabetic NephropathyDiagnosisDiseaseDisease ManagementDisease ProgressionEnzymesEvaluationFunctional disorderFundingFutureGenomicsGenotypeGoalsHealthcareHeterogeneityHospitalizationKidneyKidney DiseasesLaboratoriesLeadLinkLiquid substanceLongitudinal cohortMachine LearningMedicalMedical GeneticsMethodsModelingMolecularNon-Insulin-Dependent Diabetes MellitusPathologicPathway interactionsPatient riskPatientsPatternPhysiologicalPima IndianPlayProcessPrognostic MarkerProspective cohortProteomicsPublishingRecommendationRegulationRenal functionReportingReproducibilityResearchRiskSamplingSampling StudiesStatistical MethodsStatistical ModelsTechniquesTestingTrainingUrineValidationWorkbiological heterogeneitychemical associationcohortdesigndiabeticdiabetic patientforestgenetic signaturegenomic biomarkerhigh dimensionalityhigh riskimprovedinnovationinsightlearning strategymetabolomemetabolomicsmodel developmentmortalitynephrogenesisnetwork modelsnovelopen sourcepersonalized medicinepredictive modelingpredictive signaturepredictive testprematureprognosticprognostic signatureprospectiveprotein metabolitetargeted treatmenttherapeutic targettoolurinary
项目摘要
PROJECT SUMMARY/ABSTRACT
Rationale. Diabetes is a leading cause of renal disease, accounting for 40% of the estimated 20 million US
adult cases of chronic kidney disease. There is, however, substantial heterogeneity across diabetic patients
with regards to development of kidney disease. Hence, there is an urgent need to identify prognostic
biomarkers that can provide early and reliable evidence of future kidney disease, so that high-risk patients can
receive optimal medical care. Existing clinical, proteomic and genomic markers do not consistently nor
accurately predict kidney function decline. Metabolomics, a systematic evaluation of the end-products of
cellular function in fluids, has the potential to inform physiological and pathological effects of chronic diseases.
Metabolomic analysis combined with advanced quantitative methods could play a key role in building clinically
useful prognostic signatures of diabetic kidney disease. Yet, development of computational methods with
adequate rigor has lagged behind the technical capacity to perform large scale quantitative metabolomics. In
this proposal we aim to address this computational gap in diabetic kidney disease research. Aims. We will
implement rigorous computational methods to identify robust prognostic metabolite + clinical + genetic
signatures of diabetic kidney disease progression. Specifically, we aim to (i) test the accuracy of previous
signatures, and apply state-of-the-art analytic techniques and novel statistical methods to identify new
multivariate metabolite sets for predicting kidney disease progression; (ii) quantify patterns of co-regulation of
metabolites in diabetic kidney disease, and develop new tools in network biology to discover novel enzymes,
proteins, metabolites, and molecular pathways which are implicated in diabetic kidney disease progression; (iii)
test if these models can accurately predict kidney disease progression in independent prospective cohorts.
Methods. Using clinical, genetic and metabolomic data from large prospective cohorts of > 1200 diverse, well-
characterized patients with Type 2 diabetes, we will apply statistical methods for variable selection (e.g.,
penalized regression), and machine learning methods (e.g., random forest), which are known to perform well in
the high-dimensional setting, to identify robust and parsimonious signatures of kidney disease progression. We
will quantify inter-metabolite co-regulation patterns and infer biological pathways implicated in diabetic kidney
disease. Throughout the modeling process, a rigorous training-validation paradigm will be adopted in order to
improve reproducibility of models and reduce chance findings. Impact. A major product of this work will be the
development of a clinically useful algorithm for identifying diabetic patients at high-risk for kidney function
decline. Our findings will also provide insight into markers of renal dysfunction, and elucidate possible
therapeutic targets for treating diabetic kidney disease, thus potentially informing the design of future clinical
trials.
项目总结/摘要
理由。糖尿病是肾脏疾病的主要原因,占美国估计2000万人的40%。
成人慢性肾脏病病例。然而,在糖尿病患者中存在显著的异质性
与肾脏疾病的发展有关。因此,迫切需要确定预后
生物标志物,可以提供早期和可靠的证据,未来的肾脏疾病,使高危患者可以
获得最佳的医疗护理。现有的临床、蛋白质组学和基因组学标记并不一致,
准确预测肾功能下降。代谢组学是对代谢产物的系统评价,
液体中的细胞功能,有可能告知慢性疾病的生理和病理影响。
代谢组学分析结合先进的定量方法可以在临床上发挥关键作用,
糖尿病肾病的有用的预后标志。然而,计算方法的发展,
足够的严格性已经落后于进行大规模定量代谢组学的技术能力。在
本提案旨在解决糖尿病肾病研究中的这一计算缺口。目标。我们将
实施严格的计算方法,以确定可靠的预后代谢物+临床+遗传
糖尿病肾病进展的标志。具体而言,我们的目标是(i)测试以前的准确性
签名,并应用最先进的分析技术和新的统计方法,以确定新的
用于预测肾脏疾病进展的多变量代谢物集合;(ii)量化
代谢物在糖尿病肾病,并开发新的工具,在网络生物学发现新的酶,
涉及糖尿病肾病进展的蛋白质、代谢物和分子途径;(iii)
测试这些模型是否可以在独立的前瞻性队列中准确预测肾脏疾病的进展。
方法.使用来自大型前瞻性队列的临床,遗传和代谢组学数据,这些队列包括> 1200个不同的,良好的-
特征化的2型糖尿病患者,我们将应用统计方法进行变量选择(例如,
惩罚回归),以及机器学习方法(例如,随机森林),已知在
高维设置,以识别肾脏疾病进展的稳健和简约特征。我们
将量化代谢物间的协同调节模式,并推断糖尿病肾脏相关的生物学途径。
疾病在整个建模过程中,将采用严格的培训-验证范例,以便
提高模型再现性并减少偶然发现。冲击这项工作的一个主要成果将是
开发一种用于识别肾功能高危糖尿病患者的临床有用算法
下降我们的研究结果也将提供深入了解肾功能不全的标志物,并阐明可能的
治疗糖尿病肾病的治疗靶点,从而可能为未来的临床设计提供信息。
审判
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loki Natarajan其他文献
Loki Natarajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loki Natarajan', 18)}}的其他基金
Novel computational techniques to detect the relationship between sitting patterns and metabolic syndrome in existing cohort studies.
在现有队列研究中检测坐姿模式与代谢综合征之间关系的新计算技术。
- 批准号:
10228732 - 财政年份:2018
- 资助金额:
$ 33.7万 - 项目类别:
Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
- 批准号:
9306637 - 财政年份:2017
- 资助金额:
$ 33.7万 - 项目类别:
Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
- 批准号:
9923450 - 财政年份:2017
- 资助金额:
$ 33.7万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8072505 - 财政年份:2011
- 资助金额:
$ 33.7万 - 项目类别:
Error in diet assessment: impact on diet-cancer trials
饮食评估错误:对饮食癌症试验的影响
- 批准号:
7114735 - 财政年份:2006
- 资助金额:
$ 33.7万 - 项目类别:
Errors in Diet Assessment: Impact on Diet-Cancer trials
饮食评估中的错误:对饮食癌症试验的影响
- 批准号:
7226987 - 财政年份:2006
- 资助金额:
$ 33.7万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8376486 - 财政年份:
- 资助金额:
$ 33.7万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8688940 - 财政年份:
- 资助金额:
$ 33.7万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8504995 - 财政年份:
- 资助金额:
$ 33.7万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.7万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.7万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.7万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.7万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.7万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.7万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.7万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.7万 - 项目类别:
Research Grant