Novel computational techniques to detect the relationship between sitting patterns and metabolic syndrome in existing cohort studies.
在现有队列研究中检测坐姿模式与代谢综合征之间关系的新计算技术。
基本信息
- 批准号:10228732
- 负责人:
- 金额:$ 60.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAcuteAdolescentAdultAgeAlgorithmsAmerican Heart AssociationBehaviorBlood GlucoseBlood PressureBody PatterningBody fatCalibrationCholesterolChronic DiseaseClassificationClinicalCohort StudiesComputational TechniqueDataData SetDevelopmentDevicesDiabetes MellitusElderlyEthnic OriginFrequenciesGenderGuidelinesHealthHealth behaviorHip region structureInterventionIntervention TrialLaboratoriesLongitudinal cohort studyMachine LearningMeasurementMeasuresMetabolicMetabolic syndromeMethodsNational Health and Nutrition Examination SurveyObesityOutcomePatternPhysical activityPopulation GroupPostureProcessRecommendationReportingResearch PersonnelRisk FactorsSamplingStrokeTechniquesTestingThigh structureTimeTrainingTriglyceridesUse of New TechniquesValidationVariantYouthage groupalgorithm trainingcohortepidemiology studyheart disease riskimprovedindexingmachine learning algorithmnovelolder womenperformance testsresponsescale upsedentaryyoung adult
项目摘要
Abstract
Metabolic syndrome is a cluster of conditions (increased blood pressure, high blood sugar, excess body fat
around the waist, and abnormal cholesterol or triglyceride levels) that occur together, increasing risk of heart
disease, stroke and diabetes. Epidemiological studies have shown that prolonged sitting is deleterious to
metabolic indicators, even after adjusting for physical activity (PA). Acute laboratory trials have shown that
breaking up sitting time can improve metabolic factors. Sitting is a prevalent behavior in all population groups
by age, gender and ethnicity. Associations with metabolic syndrome factors, such as obesity, have also been
shown in all population groups. Epidemiological studies have mostly depended on reported sitting time,
especially TV reviewing. More recently large cohort studies have collected data from hip worn accelerometers
and applied a cut point (e.g., 100 counts per minute) on single axis data to estimate sedentary time. Such
devices have been included in numerous studies, principally because of their accuracy to measure PA
intensity. Primarily used in intervention trials to reduce sitting, the thigh worn ActivPAL has been shown to
more accurately assess posture and provide valid measures of sitting, standing, and sit-stand transitions. To
date, very few health outcome cohort studies have included the ActivPAL. Compared to the ActivPAL and free
living observations of sitting time, the 100 count cut point has been shown to underestimate prolonged sitting
by substantially overestimating sit-stand transitions. New studies are showing that how we accumulate sitting
time (i.e. in long or short bouts) is associated with metabolic health outcomes, and may be independent of total
sitting time and PA. Study results on prolonged sitting and metabolic risk factors from accelerometer data are
inconsistent and may be due to measurement error in the cut points employed. In a small sample of older
women, adults, and youth we have demonstrated that novel machine learned methods can greatly improve
estimates of prolonged sitting and transitions. Further development and testing of these methods would
support valid applications to existing large cohort studies with raw accelerometer data to improve estimates of
associations between sitting patterns and metabolic health. There are also many large cohorts (e.g. NHANES
2003/6), with quality health outcomes, but non raw accelerometer count data, so calibration methods to adjust
non raw estimates of sitting time are also needed and would be attractive to researchers not yet familiar with
the machine learning process. We proposed to employ 7 existing data sets (N=20,000) matched for age and
spanning youth, adults and older adults. We will scale up our training and test the performance of the refined
algorithms to detect sit-stand frequencies, prolonged sitting, usual bout duration and Alpha (a combination of
duration & frequency). We will test performance of the algorithms against ActivPAL (ground truth) and in new
samples assess predictive validity with objective health outcomes. We will test differences between the existing
and new techniques using R2 and mean-squared error of prediction (via bootstrapping) and GEE techniques.
摘要
代谢综合征是一组条件(血压升高、高血糖、体脂过多
腰围和胆固醇或甘油三酯水平异常)一起出现,增加心脏病的风险
疾病、中风和糖尿病。流行病学研究表明,久坐对人体有害。
代谢指标,即使在体力活动(PA)调整后也是如此。急性实验室试验表明,
打破坐着的时间可以改善代谢因素。久坐是所有人群中的一种普遍行为
按年龄、性别和种族分类。与代谢综合征因素,如肥胖,也有关联
在所有人口群体中都有显示。流行病学研究大多依赖于报告的坐着时间,
尤其是电视评论。最近,大型队列研究收集了臀部佩戴的加速度计的数据
并在单轴数据上应用切割点(例如,每分钟100个计数)来估计静坐时间。是这样的
许多研究中都包括了这些设备,主要是因为它们测量PA的准确性
强度。主要用于减少坐着的干预试验中,大腿佩戴的active PAL已被证明
更准确地评估姿势,并提供坐、站和坐-立转换的有效测量。至
迄今为止,很少有健康结局队列研究包括激活剂PAL。与活动PAL和FREE相比
对久坐时间的活生生的观察表明,100个数点的临界点低估了久坐的时间
因为大大高估了坐立转换。新的研究表明,我们是如何积累久坐的
时间(即长时间或短时间)与新陈代谢健康结果相关,并且可能与总结果无关
坐着的时间和PA。来自加速计数据的关于久坐和代谢风险因素的研究结果如下
不一致,可能是由于所采用的切割点的测量误差。在一个较老的小样本中
妇女、成年人和年轻人我们已经证明,新颖的机器学习方法可以极大地提高
对久坐和过渡的估计。这些方法的进一步开发和测试将
使用原始加速度计数据支持对现有大型队列研究的有效应用,以改进对
坐姿模式与新陈代谢健康之间的关系。也有许多大型队列(例如NHANE
2003/6),具有高质量的健康结果,但非原始加速度计计数数据,因此校准方法进行调整
对坐着时间的非原始估计也是必要的,这对还不熟悉的研究人员来说是有吸引力的
机器学习过程。我们建议使用7个现有数据集(N=20,000),这些数据集的年龄和
涵盖青年、成年人和老年人。我们将扩大我们的培训,并测试精炼的
检测坐立频率、延长坐姿、通常的比赛持续时间和Alpha(阿尔法组合)的算法
持续时间和频率)。我们将针对ActialPAL(基本事实)和在新的
样本用客观的健康结果评估预测的有效性。我们将测试现有的
以及使用R2和预测均方误差(通过自举)和GEE技术的新技术。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low movement, deep-learned sitting patterns, and sedentary behavior in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE).
国际儿童肥胖、生活方式和环境研究 (ISCOLE) 中的低运动、深入的坐姿模式和久坐行为。
- DOI:10.1038/s41366-023-01364-8
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hibbing,PaulR;Carlson,JordanA;Steel,Chelsea;Greenwood-Hickman,MikaelAnne;Nakandala,Supun;Jankowska,MartaM;Bellettiere,John;Zou,Jingjing;LaCroix,AndreaZ;Kumar,Arun;Katzmarzyk,PeterT;Natarajan,Loki
- 通讯作者:Natarajan,Loki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loki Natarajan其他文献
Loki Natarajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loki Natarajan', 18)}}的其他基金
Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
- 批准号:
9418599 - 财政年份:2017
- 资助金额:
$ 60.76万 - 项目类别:
Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
- 批准号:
9306637 - 财政年份:2017
- 资助金额:
$ 60.76万 - 项目类别:
Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
- 批准号:
9923450 - 财政年份:2017
- 资助金额:
$ 60.76万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8072505 - 财政年份:2011
- 资助金额:
$ 60.76万 - 项目类别:
Error in diet assessment: impact on diet-cancer trials
饮食评估错误:对饮食癌症试验的影响
- 批准号:
7114735 - 财政年份:2006
- 资助金额:
$ 60.76万 - 项目类别:
Errors in Diet Assessment: Impact on Diet-Cancer trials
饮食评估中的错误:对饮食癌症试验的影响
- 批准号:
7226987 - 财政年份:2006
- 资助金额:
$ 60.76万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8376486 - 财政年份:
- 资助金额:
$ 60.76万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8688940 - 财政年份:
- 资助金额:
$ 60.76万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8688949 - 财政年份:
- 资助金额:
$ 60.76万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 60.76万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 60.76万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 60.76万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 60.76万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 60.76万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 60.76万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 60.76万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 60.76万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 60.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 60.76万 - 项目类别:
Standard Grant














{{item.name}}会员




