Calcium-dependent functions in Hair Cells and Spiral Ganglion Neurons
毛细胞和螺旋神经节神经元的钙依赖性功能
基本信息
- 批准号:9750709
- 负责人:
- 金额:$ 41.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAdultAgeAuditoryBiochemicalBiologicalBirdsBrainBrain-Derived Neurotrophic FactorCLCA2 geneCalciumCardiacCationsCell physiologyCellsChemosensitizationCochlear ImplantsDataDevelopmentDevelopmental ProcessDihydropyridinesElectrophysiology (science)EnsureFunctional ImagingG-Protein-Coupled ReceptorsGTP-Binding ProteinsGeneticGlutamatesGoalsGrantGrowthHair CellsHearingHistologicImaging DeviceImaging TechniquesIn VitroInner Hair CellsKnowledgeLaboratoriesLabyrinthLinkMeasurableMechanicsMediatingMembraneMetabotropic Glutamate ReceptorsMolecularNTF3 geneNatural regenerationNeuronsNeurotrophin 3PathologicPatternPhysiologicalPhysiologyPropertyProtein Tyrosine KinasePublishingRegulationResearchResolutionRoleSHH geneSensorySignal TransductionSourceSynapsesTechniquesTestingTherapeuticTrademarkWorkbasebiochemical toolsbony labyrinthcell typedesignexperimental studyhigh resolution imagingin vivoinnovationinsightmicroscopic imagingmouse modelnerve supplynovelnovel therapeutic interventionpostsynapticpublic health relevancesoundspiral ganglionsynaptogenesisvoltage
项目摘要
DESCRIPTION (provided by applicant): Ca2+ enters into cells through a variety of Ca2+ channel (Cav) subtypes, as well as non-specific cationic channels, such as mechanically-gated channels. Upon entry, Ca2+ regulates the electrical and biochemical properties of hair cells (HCs) and spiral ganglion neurons (SGNs). Previous studies from our laboratory and others have made important new discoveries on the identification of the multiple Ca2+-mediated signaling in HCs and SGNs. However, the cellular mechanism of this Ca2+-mediated functions remains unclear. Additionally Ca2+ activates several outward channel currents, such as Ca2+-activated Cl- channels through mechanisms that still remains unknown. The overall goal of this proposal is to deploy innovative molecular biological, electrophysiological, and imaging techniques, many inspired from previous Ca2+ channel studies, for the discovery of fundamental and newly accessible arenas of Ca2+-mediated physiology in SGNs. This proposal drives three aims that address the HC and SGN Ca2+-mediated physiology, each with fundamental and therapeutic implications. The overall hypothesis is Ca2+ inflow into SGNs regulates distinct functions, ranging from short-term membrane excitability to long-term developmental processes. The Aims are: 1) To unequivocally resolve the functions of distinct subtypes of Ca2+ channels in SGNs. 2) To determine Ca2+-mediated mechanisms underlying the transformation of the features of pre- to post-hearing SGNs and finally 3) To determine the mechanisms underlying the reorganization of promiscuous innervation of HCs by SGNs prior to hearing onset. We predict that combined pre- and post-synaptic activities strengthen inner HC (IHC)-type 1-SGN synapse following initial indiscriminate contacts. The project will be conducted using different mouse models and their corresponding age-matched controls, as well as physiological, imaging and biochemical tools. Overall, this proposal will answer fundamental unknowns of Ca2+-mediated electrical and biochemical changes in HC and SGN physiology. Indeed, our findings are likely to reveal the mechanisms of pathological auditory phenomena, and in doing so, facilitate our efforts to design new therapeutic strategies. The discovery that developing SGNs are spontaneously active, and that this may alter SGN growth pattern as well as synapse formation are likely to have measurable impact in the design of new cochlear implants with increased precision and accuracy.
描述(由申请人提供):Ca2+通过多种Ca2+通道(Cav)亚型以及非特异性阳离子通道(例如机械门控通道)进入细胞。进入后,Ca2+ 调节毛细胞 (HC) 和螺旋神经节神经元 (SGN) 的电学和生化特性。我们实验室和其他实验室之前的研究在鉴定 HC 和 SGN 中多种 Ca2+ 介导的信号传导方面取得了重要的新发现。然而,这种 Ca2+ 介导功能的细胞机制仍不清楚。此外,Ca2+ 还可以激活多个外向通道电流,例如 Ca2+ 激活的 Cl- 通道,其机制仍未知。该提案的总体目标是部署创新的分子生物学、电生理学和成像技术,其中许多技术受到以前的 Ca2+ 通道研究的启发,用于发现 SGN 中 Ca2+ 介导的生理学的基本和新的可用领域。该提案推动了三个目标,解决 HC 和 SGN Ca2+ 介导的生理学问题,每个目标都具有基础和治疗意义。 总体假设是 Ca2+ 流入 SGN 调节不同的功能,从短期膜兴奋性到长期发育过程。目标是: 1) 明确解析 SGN 中 Ca2+ 通道不同亚型的功能。 2) 确定 Ca2+ 介导的听力前 SGN 特征转变为听力后 SGN 特征的机制,最后 3) 确定听力开始前 SGN 重组 HC 混杂神经支配的机制。我们预测,在最初的不加区别的接触之后,突触前和突触后的组合活动会增强内部 HC (IHC) 型 1-SGN 突触。 该项目将使用不同的小鼠模型及其相应的年龄匹配对照,以及生理、成像和生化工具来进行。总体而言,该提案将解答 HC 和 SGN 生理学中 Ca2+ 介导的电和生化变化的基本未知问题。事实上,我们的发现很可能揭示病理性听觉现象的机制,并在此过程中促进我们设计新的治疗策略的努力。发育中的 SGN 是自发活跃的,这可能会改变 SGN 的生长模式以及突触形成,这一发现可能会对新型人工耳蜗植入物的设计产生重大影响,提高精度和准确度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Anne NMI Gratton其他文献
Michael Anne NMI Gratton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Anne NMI Gratton', 18)}}的其他基金
Calcium-dependent functions in Hair Cells and Spiral Ganglion Neurons
毛细胞和螺旋神经节神经元的钙依赖性功能
- 批准号:
9535977 - 财政年份:2016
- 资助金额:
$ 41.7万 - 项目类别:
Calcium-dependent functions in Hair Cells and Spiral Ganglion Neurons
毛细胞和螺旋神经节神经元的钙依赖性功能
- 批准号:
9306819 - 财政年份:2016
- 资助金额:
$ 41.7万 - 项目类别:
Calcium-dependent functions in Hair Cells and Spiral Ganglion Neurons
毛细胞和螺旋神经节神经元的钙依赖性功能
- 批准号:
9979832 - 财政年份:2016
- 资助金额:
$ 41.7万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Research Grant














{{item.name}}会员




