Prediction of seizure lateralization and postoperative outcome through the use of deep learning applied to multi-site MRI/DTI data: An ENIGMA-Epilepsy study
通过将深度学习应用于多部位 MRI/DTI 数据来预测癫痫偏侧化和术后结果:ENIGMA-癫痫研究
基本信息
- 批准号:9751025
- 负责人:
- 金额:$ 44.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAge of OnsetAlgorithmsAntiepileptic AgentsBenchmarkingCapitalCharacteristicsClassificationClinicalClinical DataComplexCountryCoupledDataData CollectionData SetDatabasesDevelopmentDiagnosticDiagnostic ProcedureDiffusion Magnetic Resonance ImagingDiseaseElectroencephalographyEpilepsyEthnic OriginEvaluationGeographyGoldGrantImageIndividualInfrastructureInstitutionLeadLeftLesionLiftingMachine LearningMagnetic Resonance ImagingMethodsModelingMultimodal ImagingNational Institute of Neurological Disorders and StrokeNetwork-basedNeurologicOperative Surgical ProceduresOutcomePartial EpilepsiesPatientsPatternPharmacotherapyPlayPopulationPostoperative PeriodPrediction of Response to TherapyProbabilityReproducibilityReproducibility of ResultsResearchResourcesRoleSample SizeSamplingScanningSeizuresSiteStructureSyndromeTalentsTechniquesTemporal Lobe EpilepsyTestingThinnessUnited States National Institutes of HealthValidationbasebiomarker identificationbrain abnormalitiesclassification algorithmcohortcomputing resourcesconnectomecostcost effectivedeep learningdesigngray matterhands-on learningimaging studyimprovedinnovationinterestmachine learning algorithmnervous system disorderneural networkneuroimagingnovelnovel strategiespersonalized approachsexstandard of caresurgery outcomewhite matter
项目摘要
ABSTRACT
Epilepsy is a devastating neurological illness that affects 65 million people worldwide. Approximately
one-third of patients affected do not respond to antiepileptic drug therapy and require a thorough diagnostic
work-up. Structural neuroimaging plays a pivotal role in the diagnostic evaluation of patients with focal
epilepsy, identifying visible lesions in many patients that often coincide with the seizure focus. However, 20-
40% of patients have normal-appearing MRIs and this number appears to be growing. As a result, there is
increased interest in identifying subtle gray and white matter network changes on non-invasive, quantitative
MRI, including structural MRI (sMRI) and diffusion tensor imaging (DTI), that can help to delineate the
epileptogenic network. Unfortunately, methods for selecting optimal features from sMRI/DTI data in patients
with epilepsy that can address these clinical challenges have not been developed. There are at least two
major barriers that have limited progress in this field. First, sample sizes have been insufficient to develop
reliable classification algorithms in patients with focal epilepsy that lead to reproducible findings. The
high cost of data collection - few studies scan more than 50-60 patients - has led to underpowered studies
whose findings often fail to replicate and cannot adequately model confounds. Second, high computational
demands have previously limited the feasibility of using sophisticated, feature-selection (i.e., Machine
Learning; ML) algorithms in clinical settings.
A new, large-scale data initiative (i.e., ENIGMA-epilepsy) acquired from 24 sites world-wide is now
lifting these barriers and allowing for the development and validation of innovative data-driven approaches
aimed at optimizing the use of MRI data in the evaluation of epilepsy. In this grant, we will leverage data
collected through ENIGMA-Epilepsy—a new, cost-effective, innovative global approach that unblocks the
power logjam by merging resources, data, capital infrastructure and talents of leading epilepsy centers
from 14 countries across the world (2,149 patient and 1,727 healthy control MRI/DTI datasets). We will
also leverage new developments in ML (i.e., deep learning) and network-based modeling (i.e., connectome-
based approaches) and test whether these novel approaches improve upon classification accuracy relative to
simpler, user-driven models. Our primary aim will be to test the ability of our deep learning approach (i.e.,
dense neural networks) to lateralize the seizure focus. In an exploratory aim, we will test the ability of our
model to predict post-operative seizure outcomes. ENIGMA's harmonized approach will allow us to test our
approach in over 24 datasets, diverse in age, ethnicity, age of onset, epilepsy duration, and surgical outcomes.
This R-21 application addresses NIH's call for more reproducible studies by introducing a highly-
powered design, and is directly aligned with NINDS's 2014 Epilepsy Benchmarks, which encourage the
identification of biomarkers for assessing or predicting treatment response in patients with epilepsy.
抽象的
癫痫是一种毁灭性的神经系统疾病,影响着全世界 6500 万人。大约
三分之一受影响的患者对抗癫痫药物治疗没有反应,需要彻底诊断
工作。结构神经影像在局灶性脑病患者的诊断评估中发挥着关键作用
癫痫,识别许多患者的可见病变,这些病变通常与癫痫病灶一致。然而,20-
40% 的患者 MRI 表现正常,而且这个数字似乎还在增长。结果,有
对非侵入性、定量识别微妙的灰质和白质网络变化的兴趣增加
MRI,包括结构 MRI (sMRI) 和扩散张量成像 (DTI),可以帮助描绘
致癫痫网络。不幸的是,从患者的 sMRI/DTI 数据中选择最佳特征的方法
尚未开发出可以解决这些临床挑战的癫痫药物。至少有两个
限制该领域进展的主要障碍。首先,样本量不足以开发
局灶性癫痫患者的可靠分类算法可得出可重复的结果。这
数据收集成本高昂 - 很少有研究扫描超过 50-60 名患者 - 导致研究动力不足
其研究结果往往无法复制,也无法充分模拟混杂因素。二、高计算性
以前的需求限制了使用复杂的特征选择(即机器
学习; ML)临床环境中的算法。
从全球 24 个站点获取的一项新的大规模数据计划(即 ENIGMA-epilepsy)现已投入使用
消除这些障碍并允许开发和验证创新的数据驱动方法
旨在优化 MRI 数据在癫痫评估中的使用。在这笔赠款中,我们将利用数据
通过 ENIGMA-Epilepsy 收集 - 一种新的、具有成本效益的、创新的全球方法,可以解除障碍
通过合并领先癫痫中心的资源、数据、资本基础设施和人才来解决电力僵局
来自全球 14 个国家(2,149 名患者和 1,727 名健康对照 MRI/DTI 数据集)。我们将
还利用机器学习(即深度学习)和基于网络的建模(即连接组)的新发展
基于方法)并测试这些新方法是否相对于分类精度有所提高
更简单、用户驱动的模型。我们的主要目标是测试我们深度学习方法的能力(即
密集的神经网络)以偏侧化癫痫病灶。在探索性目标中,我们将测试我们的能力
预测术后癫痫发作结果的模型。 ENIGMA 的统一方法将使我们能够测试我们的
该方法在超过 24 个数据集中进行,这些数据集的年龄、种族、发病年龄、癫痫持续时间和手术结果各不相同。
该 R-21 应用通过引入高度可重复性的研究来满足 NIH 对更具可重复性研究的呼吁
动力设计,并直接与 NINDS 的 2014 年癫痫基准保持一致,该基准鼓励
鉴定用于评估或预测癫痫患者治疗反应的生物标志物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonardo F Bonilha其他文献
Leonardo F Bonilha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonardo F Bonilha', 18)}}的其他基金
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
9811129 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10241330 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10649724 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10470912 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10005301 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10619937 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10158551 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 44.43万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 44.43万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 44.43万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 44.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 44.43万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 44.43万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 44.43万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 44.43万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 44.43万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




