Prediction of seizure lateralization and postoperative outcome through the use of deep learning applied to multi-site MRI/DTI data: An ENIGMA-Epilepsy study
通过将深度学习应用于多部位 MRI/DTI 数据来预测癫痫偏侧化和术后结果:ENIGMA-癫痫研究
基本信息
- 批准号:9751025
- 负责人:
- 金额:$ 44.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAge of OnsetAlgorithmsAntiepileptic AgentsBenchmarkingCapitalCharacteristicsClassificationClinicalClinical DataComplexCountryCoupledDataData CollectionData SetDatabasesDevelopmentDiagnosticDiagnostic ProcedureDiffusion Magnetic Resonance ImagingDiseaseElectroencephalographyEpilepsyEthnic OriginEvaluationGeographyGoldGrantImageIndividualInfrastructureInstitutionLeadLeftLesionLiftingMachine LearningMagnetic Resonance ImagingMethodsModelingMultimodal ImagingNational Institute of Neurological Disorders and StrokeNetwork-basedNeurologicOperative Surgical ProceduresOutcomePartial EpilepsiesPatientsPatternPharmacotherapyPlayPopulationPostoperative PeriodPrediction of Response to TherapyProbabilityReproducibilityReproducibility of ResultsResearchResourcesRoleSample SizeSamplingScanningSeizuresSiteStructureSyndromeTalentsTechniquesTemporal Lobe EpilepsyTestingThinnessUnited States National Institutes of HealthValidationbasebiomarker identificationbrain abnormalitiesclassification algorithmcohortcomputing resourcesconnectomecostcost effectivedeep learningdesigngray matterhands-on learningimaging studyimprovedinnovationinterestmachine learning algorithmnervous system disorderneural networkneuroimagingnovelnovel strategiespersonalized approachsexstandard of caresurgery outcomewhite matter
项目摘要
ABSTRACT
Epilepsy is a devastating neurological illness that affects 65 million people worldwide. Approximately
one-third of patients affected do not respond to antiepileptic drug therapy and require a thorough diagnostic
work-up. Structural neuroimaging plays a pivotal role in the diagnostic evaluation of patients with focal
epilepsy, identifying visible lesions in many patients that often coincide with the seizure focus. However, 20-
40% of patients have normal-appearing MRIs and this number appears to be growing. As a result, there is
increased interest in identifying subtle gray and white matter network changes on non-invasive, quantitative
MRI, including structural MRI (sMRI) and diffusion tensor imaging (DTI), that can help to delineate the
epileptogenic network. Unfortunately, methods for selecting optimal features from sMRI/DTI data in patients
with epilepsy that can address these clinical challenges have not been developed. There are at least two
major barriers that have limited progress in this field. First, sample sizes have been insufficient to develop
reliable classification algorithms in patients with focal epilepsy that lead to reproducible findings. The
high cost of data collection - few studies scan more than 50-60 patients - has led to underpowered studies
whose findings often fail to replicate and cannot adequately model confounds. Second, high computational
demands have previously limited the feasibility of using sophisticated, feature-selection (i.e., Machine
Learning; ML) algorithms in clinical settings.
A new, large-scale data initiative (i.e., ENIGMA-epilepsy) acquired from 24 sites world-wide is now
lifting these barriers and allowing for the development and validation of innovative data-driven approaches
aimed at optimizing the use of MRI data in the evaluation of epilepsy. In this grant, we will leverage data
collected through ENIGMA-Epilepsy—a new, cost-effective, innovative global approach that unblocks the
power logjam by merging resources, data, capital infrastructure and talents of leading epilepsy centers
from 14 countries across the world (2,149 patient and 1,727 healthy control MRI/DTI datasets). We will
also leverage new developments in ML (i.e., deep learning) and network-based modeling (i.e., connectome-
based approaches) and test whether these novel approaches improve upon classification accuracy relative to
simpler, user-driven models. Our primary aim will be to test the ability of our deep learning approach (i.e.,
dense neural networks) to lateralize the seizure focus. In an exploratory aim, we will test the ability of our
model to predict post-operative seizure outcomes. ENIGMA's harmonized approach will allow us to test our
approach in over 24 datasets, diverse in age, ethnicity, age of onset, epilepsy duration, and surgical outcomes.
This R-21 application addresses NIH's call for more reproducible studies by introducing a highly-
powered design, and is directly aligned with NINDS's 2014 Epilepsy Benchmarks, which encourage the
identification of biomarkers for assessing or predicting treatment response in patients with epilepsy.
摘要
癫痫是一种毁灭性的神经疾病,影响着全球6500万人。大致
三分之一的患者对抗癫痫药物治疗没有反应,需要进行彻底的诊断
体能训练。结构神经成像在局灶性脑脊髓炎的诊断评估中起着关键作用
癫痫,在许多患者中识别可见的病变,通常与癫痫灶一致。然而,20-
40%的患者核磁共振成像正常,而且这一数字似乎还在增长。因此,有
在非侵入性、量化的情况下识别细微的灰质和白质网络变化的兴趣增加
磁共振成像,包括结构磁共振成像(SMRI)和弥散张量成像(DTI),可以帮助描绘
致痫网络。不幸的是,从患者的sMRI/DTI数据中选择最佳特征的方法
可以解决这些临床挑战的癫痫还没有开发出来。至少有两个
限制这一领域进展的主要障碍。首先,样本规模不足以进行开发
在局灶性癫痫患者中可靠的分类算法,导致可重复的发现。这个
数据收集的高成本-很少有研究扫描超过50-60名患者-导致研究动力不足
他们的发现往往无法复制,也不能充分模拟混乱。第二,计算量大
以前的需求限制了使用复杂的特征选择(即机器)的可行性
学习;ML)临床环境中的算法。
从全球24个地点获得的一项新的大规模数据倡议(即谜-癫痫)现在正在进行
消除这些障碍,并允许开发和验证创新的数据驱动方法
目的:优化MRI数据在癫痫评估中的应用。在这笔赠款中,我们将利用数据
通过谜-癫痫收集-一种新的、具有成本效益的创新全球方法,开启了
整合领先癫痫中心的资源、数据、资本基础设施和人才导致电力僵局
来自全球14个国家/地区(2,149名患者和1,727名健康对照的MRI/DTI数据集)。我们会
还可以利用ML(即深度学习)和基于网络的建模(即Connectome-
基于方法),并测试这些新方法是否提高了相对于
更简单、用户驱动的模型。我们的主要目标是测试我们的深度学习方法的能力(即,
密集神经网络),以确定癫痫发作的侧化焦点。在一个探索性的目标中,我们将测试我们的
用于预测术后癫痫结果的模型。Enigma的协调方法将允许我们测试我们的
方法在超过24个数据集,不同的年龄,种族,发病年龄,癫痫持续时间和手术结果。
这个R-21应用程序响应了美国国立卫生研究院对更多可重复性研究的呼吁,通过引入高度
动力设计,并直接与NINDS的2014年癫痫基准保持一致,这鼓励
用于评估或预测癫痫患者治疗反应的生物标志物的鉴定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonardo F Bonilha其他文献
Leonardo F Bonilha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonardo F Bonilha', 18)}}的其他基金
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
9811129 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10241330 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10649724 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10470912 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10005301 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10619937 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10158551 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 44.43万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 44.43万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 44.43万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 44.43万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 44.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 44.43万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 44.43万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 44.43万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 44.43万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 44.43万 - 项目类别:
Miscellaneous Programs