Brain Health and Aphasia Recovery

大脑健康和失语症恢复

基本信息

项目摘要

Abstract Language impairments can vary considerably between individuals with aphasia. Our neurobiological models based on the stroke lesion can only partly explain the aphasic symptoms. We hypothesize that the integrity of the residual brain tissue outside the stroke lesion is an important, but not yet fully appreciated, determinant of aphasia severity and recovery. It is well recognized that cardiovascular risk factors lead to cumulative widespread brain damage through small vessel disease (SVD). Outside the aphasia literature, SVD has been strongly associated with poor cognitive reserve and reduced resiliency to various forms of neurological injury. Stroke survivors with aphasia typically have cardiovascular risk factors and they commonly exhibit SVD. However, the impact of SVD is not usually taken into account in our models of recovery, even though the residual brain tissue is responsible for overcoming the loss of function. It follows that higher degrees of SVD outside the lesion may lead to worse aphasic symptoms and less chances of recovery due to reduced capacity to compensate for the stroke injury. Our goal is to directly test this hypothesis. We propose to evaluate how aphasia is shaped by the stroke lesion in combination with residual brain integrity. Neuroimaging (brain MRI) is ideally suited to address this problem. SVD is composed of microangiopathic ischemic changes and microhemorrhages. The ischemic changes from SVD can be measured through white matter hyper intensities using T2-weighted and T2-FLAIR images, and the microhemorrhages can be assessed using susceptibility-weighted images. SVD preferentially affects white matter and diffusion MRI can provide additional measures of white matter microstructural integrity and their relationship with the whole brain neuronal networks architecture (the brain connectome). Using our experience with post-stroke lesion symptom mapping, white matter and connectome imaging we propose a comprehensive study of the neurobiology and impact of SVD in aphasia. Our project will build on international guidelines for SVD assessment (The STandards for ReportIng Vascular changes on nEuroimaging - STRIVE) and it will develop an innovative multimodal machine learning approach to fully assess brain integrity. Brain integrity and language measures will be assessed in the context of chronic (Project 1) and acute (Project 2) aphasia recovery. The behavioral and linguistic assessments will be guided by Project 4. With the neuroimaging core, we will develop and distribute a multimodal neuroimaging approach to quantify the severity and location of SVD. Specific Aim 1 will longitudinally assess the independent impact of SVD, controlling for the brain lesion, on acute and chronic symptoms, as well as acute and chronic language recovery. Specific Aim 2 will evaluate the mechanisms by which SVD leads to language impairments by assessing the impact of SVD and stroke lesions on connectome neural network architecture, loss of associative long-range white matter fibers and its relationship with semantic, lexical-semantic, lexical-phonological, phonological/phonetic deficits.
摘要 失语症患者的语言障碍可能有很大差异。我们的神经生物学 基于脑卒中损害的模型只能部分解释失语症状。我们假设 中风损伤外的残留脑组织的完整性是一个重要的,但尚未完全认识到, 失语症严重程度和恢复的决定因素。 众所周知,心血管危险因素会导致累积性广泛脑损伤 小血管疾病(SVD)在失语症文献之外,SVD与 认知储备差,对各种形式的神经损伤的弹性降低。中风幸存者, 失语症通常具有心血管危险因素,并且通常表现出SVD。然而, 在我们的恢复模型中通常不考虑SVD,即使残留的脑组织是 负责克服功能丧失。因此,病变外的SVD程度较高, 导致更严重的失语症症状和更少的恢复机会,由于减少的能力,以弥补 中风损伤我们的目标是直接测试这个假设。 我们建议评估失语症是如何形成的中风病变结合残留的大脑 完整神经影像学(脑部MRI)非常适合解决这个问题。SVD由以下部分组成 微血管病性缺血性变化和微血管病变。SVD引起的缺血性变化可能是 使用T2加权和T2-FLAIR图像通过白色高信号测量, 微血管造影可以使用可测量性加权图像来评估。SVD优先影响白色 物质和扩散MRI可以提供白色物质微结构完整性及其 与整个大脑神经元网络结构(大脑连接体)的关系。 利用我们在卒中后病变症状标测、白色物质和连接体成像方面的经验 我们提出了一个全面的研究神经生物学和影响SVD在失语症。我们的项目将建立在 SVD评估的国际指南(报告血管变化的标准, nEuroimaging -BARVE),并将开发一种创新的多模态机器学习方法, 评估大脑的完整性 将在慢性(项目1)和急性的背景下评估大脑完整性和语言测量 (2)失语症的康复。行为和语言评估将由项目4指导。与 神经影像学核心,我们将开发和分发多模式神经影像学方法,以量化严重程度 以及SVD的位置 具体目标1将纵向评估SVD的独立影响,控制脑病变, 急性和慢性症状,以及急性和慢性语言恢复。第2章评价 通过评估SVD和中风的影响,研究SVD导致语言障碍的机制 连接体神经网络结构的损伤,联合长距离白色纤维的丢失及其 与语义、词汇语义、词汇语音、语音/语音缺陷的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonardo F Bonilha其他文献

Leonardo F Bonilha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonardo F Bonilha', 18)}}的其他基金

Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
  • 批准号:
    9811129
  • 财政年份:
    2019
  • 资助金额:
    $ 17.43万
  • 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
  • 批准号:
    10241330
  • 财政年份:
    2019
  • 资助金额:
    $ 17.43万
  • 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
  • 批准号:
    10470912
  • 财政年份:
    2019
  • 资助金额:
    $ 17.43万
  • 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
  • 批准号:
    10649724
  • 财政年份:
    2019
  • 资助金额:
    $ 17.43万
  • 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
  • 批准号:
    10619937
  • 财政年份:
    2019
  • 资助金额:
    $ 17.43万
  • 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
  • 批准号:
    10005301
  • 财政年份:
    2019
  • 资助金额:
    $ 17.43万
  • 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
  • 批准号:
    10158551
  • 财政年份:
    2019
  • 资助金额:
    $ 17.43万
  • 项目类别:
Prediction of seizure lateralization and postoperative outcome through the use of deep learning applied to multi-site MRI/DTI data: An ENIGMA-Epilepsy study
通过将深度学习应用于多部位 MRI/DTI 数据来预测癫痫偏侧化和术后结果:ENIGMA-癫痫研究
  • 批准号:
    9751025
  • 财政年份:
    2019
  • 资助金额:
    $ 17.43万
  • 项目类别:
Brain Health and Aphasia Recovery
大脑健康和失语症恢复
  • 批准号:
    10390288
  • 财政年份:
    2016
  • 资助金额:
    $ 17.43万
  • 项目类别:
Brain Health and Aphasia Recovery
大脑健康和失语症恢复
  • 批准号:
    10617715
  • 财政年份:
    2016
  • 资助金额:
    $ 17.43万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了