Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
基本信息
- 批准号:10158551
- 负责人:
- 金额:$ 63.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAnterior Temporal LobectomyAreaBasic ScienceBrainBrain MappingCaringClinicalClinical DataCommon Data ElementContralateralCounselingDataData CollectionDetectionDiffusionDiffusion Magnetic Resonance ImagingElectrocoagulationElectroencephalographyEnsureEpilepsyEvaluationExcisionFailureFiberFreedomFunctional Magnetic Resonance ImagingFunctional disorderFutureHippocampus (Brain)ImageIndividualIntractable EpilepsyKnowledgeLesionLocationMachine LearningMagnetic Resonance ImagingMeasuresMedialMethodsModalityModelingModernizationNeurobiologyNeuronsOperative Surgical ProceduresOutcomePathologicPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPhenotypePredictive ValueProceduresProspective StudiesProspective cohortPublishingRefractoryReproducibilityResearchResistanceRestRiskScalp structureSeizuresSensitivity and SpecificitySeveritiesStructureTemporal Lobe EpilepsyTestingThalamic structureTonic-Clonic EpilepsyTreatment outcomeUnited States National Institutes of HealthValidationbasecomputerized toolsconnectomeexperiencegray matterhippocampal atrophyimaging modalityimprovedmillimetermultimodalityneural networkneural network architectureneuroimagingneuronal circuitrynovel strategiesorganizational structureoutcome predictionpredictive modelingprospectiverecruitresponsestandard of caresuccesssurgery outcometractographywhite matter
项目摘要
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of pharmacologically resistant epilepsy. The
resection or ablation of medial temporal structures can be curative for many patients. Unfortunately,
approximately one third of patients who undergo TLE surgery continue to have disabling seizures post-
procedurally. The reasons for suboptimal outcomes are not well understood and therefore constitute a very
important knowledge gap in epilepsy care. A better understanding of this difference in surgical response
phenotype could be used to improve surgical planning, treatment, outcome prediction and counseling.
Promising preliminary studies suggest that TLE surgical outcomes can be inferred by neuroimaging
computational tools assessing the cumulative degree of abnormalities in the topological organization of
structural networks involving limbic and extra-limbic regions. Nonetheless, network abnormalities are not
routinely or systematically used and quantified in the pre-surgical evaluation of epilepsies, and their
assessment requires refinement and further validation. The purpose of this proposal is to perform a
prospective study to test the hypothesis that the degree of limbic and extra-limbic network abnormalities in
TLE, systematically assessed using a connectome approach based on optimized diffusion MRI (dMRI), can be
used to predict and better understand epilepsy surgery outcomes. This hypothesis builds on the well-defined
basic science and neurobiological premises that epilepsy is associated with pathological alterations in
networks that are related to seizure onset and seizure propagation. Importantly, network abnormalities are not
visible on routine MRI, but their detection using connectomes constitutes a modern approach to quantifying the
location and magnitude of “lesional epilepsy,” where broad computational network abnormalities imply worse
outcomes. We will prospectively gather clinical and imaging data at six epilepsy centers using the NIH epilepsy
common data elements. This project will be fundamentally based on standard of care data, thus minimizing the
burden of extra data collection and ensuring feasibility. Furthermore, this project will be embedded in the
ENIGMA-Epilepsy framework, which is a collaborative platform for clinical and neuromaging multi-center
research. Specific Aim 1 will define the accuracy, reproducibility, and predictive values of the pre-surgical dMRI
tractography connectome model towards surgical results in TLE. We will perform hypothesis-driven tests of
specific limbic and extra-limbic networks in relationship with clinical data and surgical outcomes. Specific Aim 2
will test if the neuroimaging-clinical outcome model can be further improved with advanced diffusion methods
(multi-shell diffusional kurtosis imaging), resting state functional MRI networks, or a multimodal approach. We
believe that this research will have an important impact on our understanding of the mechanisms related to
TLE treatment.
摘要
颞叶癫痫(TLE)是最常见的耐药癫痫之一。这个
切除或消融内侧颞骨结构可以治愈许多患者。不幸的是,
接受TLE手术的患者中,约有三分之一在术后仍有致残性癫痫发作。
从程序上讲。次优结果的原因还不是很清楚,因此构成了一个非常
癫痫护理方面的重要知识缺口。更好地理解手术反应的这种差异
表型可用于改进手术计划、治疗、结果预测和咨询。
有希望的初步研究表明,TLE手术结果可以通过神经成像来推断
评估拓扑组织中的累积异常程度的计算工具
涉及边缘和边缘外区域的结构网络。然而,网络异常并不是
在癫痫的术前评估中常规或系统地使用和量化,以及他们的
评估需要改进和进一步验证。本提案的目的是执行一项
一项前瞻性研究,以检验边缘和边缘外网络异常程度的假设
使用基于优化弥散磁共振成像(DMRI)的连接组方法系统地评估TLE,可以
用于预测和更好地了解癫痫手术结果。这一假设建立在定义明确的
癫痫与脑部病理改变相关的基础科学和神经生物学前提
与癫痫发作和癫痫传播有关的网络。重要的是,网络异常不会
在常规MRI上可见,但使用连接检测它们构成了一种现代方法来量化
“狼疮性癫痫”的位置和程度,广泛的计算网络异常意味着更严重的情况
结果。我们将使用NIH癫痫前瞻性地收集六个癫痫中心的临床和影像数据
公共数据元素。该项目将从根本上基于护理标准数据,从而最大限度地减少
额外收集数据的负担和确保可行性。此外,该项目将嵌入到
谜-癫痫框架,是临床和神经成像多中心的协作平台
研究。具体目标1将确定手术前dmri的准确性、重复性和预测值。
TLE的气管造影术与手术结果的关系。我们将执行假设驱动的测试
特定的边缘和边缘外网络与临床数据和手术结果的关系。具体目标2
将测试神经影像-临床结果模型是否可以用先进的扩散方法进一步改进
(多层扩散峰度成像)、静息状态功能MRI网络或多模式方法。我们
相信这项研究将对我们理解心力衰竭的相关机制产生重要影响
TLE治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonardo F Bonilha其他文献
Leonardo F Bonilha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonardo F Bonilha', 18)}}的其他基金
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
9811129 - 财政年份:2019
- 资助金额:
$ 63.89万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10241330 - 财政年份:2019
- 资助金额:
$ 63.89万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10470912 - 财政年份:2019
- 资助金额:
$ 63.89万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10649724 - 财政年份:2019
- 资助金额:
$ 63.89万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10619937 - 财政年份:2019
- 资助金额:
$ 63.89万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10005301 - 财政年份:2019
- 资助金额:
$ 63.89万 - 项目类别:
Prediction of seizure lateralization and postoperative outcome through the use of deep learning applied to multi-site MRI/DTI data: An ENIGMA-Epilepsy study
通过将深度学习应用于多部位 MRI/DTI 数据来预测癫痫偏侧化和术后结果:ENIGMA-癫痫研究
- 批准号:
9751025 - 财政年份:2019
- 资助金额:
$ 63.89万 - 项目类别:
相似海外基金
AFFECT MODULATION AFTER ANTERIOR TEMPORAL LOBECTOMY
前颞叶切除术后影响调节
- 批准号:
6115367 - 财政年份:1998
- 资助金额:
$ 63.89万 - 项目类别:
AFFECT MODULATION AFTER ANTERIOR TEMPORAL LOBECTOMY
前颞叶切除术后影响调节
- 批准号:
6276601 - 财政年份:1998
- 资助金额:
$ 63.89万 - 项目类别:
AFFECT MODULATION AFTER ANTERIOR TEMPORAL LOBECTOMY
前颞叶切除术后影响调节
- 批准号:
6246515 - 财政年份:1997
- 资助金额:
$ 63.89万 - 项目类别:
ANTERIOR TEMPORAL LOBECTOMY--TWO SURGICAL METHODS
前颞叶切除术--两种手术方法
- 批准号:
3415305 - 财政年份:1991
- 资助金额:
$ 63.89万 - 项目类别:
ANTERIOR TEMPORAL LOBECTOMY: COMPARISON OF TWO SURGICAL
前颞叶切除术:两种手术的比较
- 批准号:
3415302 - 财政年份:1991
- 资助金额:
$ 63.89万 - 项目类别:














{{item.name}}会员




