Detecting elusive biologically significant structural differences with serial crystallography
通过系列晶体学检测难以捉摸的生物学上显着的结构差异
基本信息
- 批准号:9752613
- 负责人:
- 金额:$ 19.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAlgorithmsBindingBiologicalCellsComputer softwareCrystallizationCrystallographyDataData SetDiseaseEnvironmentExcisionFaceGenetic PolymorphismHealthHumanImageIndividualInvestmentsKnowledgeLigandsLightMeasuresMethodsModernizationMolecular ConformationPathway interactionsPatternPolymorphPopulation SizesProtein DynamicsProteinsResolutionRoentgen RaysSamplingSchemeSoftware FrameworkSourceSpecimenStructureSynchrotronsTechniquesTherapeuticTimeTrainingWeightWorkbasebeamlinedynamic systemimprovedresponsestructural biologythree dimensional structuretoolx-ray free-electron laser
项目摘要
Project Summary/Abstract: Issues underlying human health depend on understanding proteins in different
conformational states (perturbed either by therapeutic compounds or by changes in their environment). The
high brilliance of modern synchrotron and XFEL facilities can gather many samples of each conformation state
of a specimen containing proteins in multiple conformational states, yielding thousands of data points that, if
correctly clustered, can provide snapshots of the protein in each of its states. By gaining the cooperation of the
major developers of clustering software, we will combine the strengths of existing tools with new algorithms to
answer the urgent problem of re-organizing mixed data from proteins in multiple states into multiple data from
proteins in single states. Working independently the software developers that are collaborating on this project
have developed paradigm-changing clustering software. Each of these algorithms works well in specific cases,
but none are sufficient to solve solve all the clustering problems we now face. Serial crystallography is a powerful
technique in which diffraction patterns from many crystals of the same substance are studied to understand
the possible 3-dimensional structure or structures of the substance. It is an essential technique that was made
possible by brilliant new X-ray free electron laser (XFEL) light sources and has become an important technique
at synchrotrons as well. The data may be organized either as stills (usually at XFELs) or narrow wedges (serial
crystallography at synchtrotrons, SXS). In either case the stills and wedges must be carefully organized into highly
homogeneous clusters of data that can be merged for processing.
There are several alternative approaches to discovering appropriate clusters, based, for example, on com-
parisons of crystallographic cell parameters or, alternatively, on comparisons of intensities of diffraction reflection
amplitudes. In many cases, if the quality and correct clustering criteria are known in advance these existing tools
are adequate, especially when their only task is to sort good images from bad ones. However, when one tries to
separate polymorphs, or to follow sequential states in a dynamic system, one requires more effective clustering
algorithms; no single clustering criterion is sufficient. Clustering based on cell parameters is effective at the early
stages of clustering when dealing with partial data sets. One might investigate other criteria such as differences
of Wilson plots to measure similarities of data. When the original data are complete (> 75% today for similar
applications), or one wants to achieve higher levels of completeness, one can cluster on correlation of intensi-
ties. Perhaps one must adjust weighting of criteria by resolution ranges. This project is exploring multi-stage
sequential clustering, developing optimal tools that will move from one clustering criterion to another, leading to
merged sets of sufficiently complete reflection-intensity data. This will provide information most sensitive to the
phenomena being investigated to allow work within an integrated software framework.
项目摘要/摘要:人类健康的根本问题取决于对不同蛋白质的理解
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXEI SUAREZ SOARES其他文献
ALEXEI SUAREZ SOARES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXEI SUAREZ SOARES', 18)}}的其他基金
HIGH PRESSURE EXPERIMENTS WITH CUBIC INSULIN AND RHOMBOHEDRAL INSULIN
立方胰岛素和菱面体胰岛素的高压实验
- 批准号:
7358946 - 财政年份:2006
- 资助金额:
$ 19.11万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Continuing Grant














{{item.name}}会员




