3D Quantitative Fluorescent Speckle Microscopy
3D 定量荧光散斑显微镜
基本信息
- 批准号:9752630
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-01-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsActomyosinAdoptedAdoptionAffectAutomobile DrivingBenchmarkingBiochemicalBiologicalCell AdhesionCell Surface ReceptorsCell modelCell physiologyCell-Matrix JunctionCellsCellular StructuresCellular biologyClathrinCollaborationsColorCommunitiesComputersComputing MethodologiesCoupledCultured CellsCytoskeletonData SetDedicationsDevelopmentDimensionsEngineeringEnvironmentEpithelial CellsExcisionEyeFluorescence MicroscopyFluorescent ProbesFocal AdhesionsFundingGene ExpressionGenerationsGeometryGlassGoalsGrantImageImageryImaging TechniquesImaging technologyIn VitroIndividualInfrastructureIntuitionLabelLifeLightMacromolecular ComplexesMapsMeasuresMechanicsMeiosisMemoryMethodsMicroscopyMicrotubulesMitoticModelingMolecularMolecular StructureMonitorMorphogenesisMotionNatureNetwork-basedOpticsOrganellesOrganizational ModelsPatternPhysiologicalPlus End of the MicrotubulePolymersPopulationPositioning AttributePost-Translational Protein ProcessingPreparationProcessProgress ReportsRegulationResearchResolutionSalmonSamplingSignal TransductionSlideStructureSubcellular structureSurfaceTechniquesTechnologyTestingTextureThree-Dimensional ImageTimeTissue ModelTissuesTrainingVisualWorkbasecell assemblycell cortexcell motilitycoated pitcomputerized toolsdesignexperimental groupexperimental studyextracellularflexibilityhigh resolution imagingimaging capabilitiesimaging modalityimaging studyinterestlight microscopylive cell imagingmacromolecular assemblymicroscopic imagingmigrationmolecular assembly/self assemblymolecular dynamicsmovienanometernoveloperationparticlepolarized cellpreventquantitative imagingreconstitutionroutine imagingsingle moleculespatiotemporaltechnological innovationtissue culturetooltwo-dimensional
项目摘要
ABSTRACT
Fluorescent Speckle Microscopy (FSM) is an imaging mode to visualize and quantify the
dynamics of macromolecular assemblies in living cells. It relies on vastly substoichiometric
labeling of one or several components of the assembly of interest. When imaged by diffraction
limited optics this labeling generates a random punctate texture that encodes in a statistical
fashion transport, mechanical deformation, and molecular turnover of the assembly. As such,
FSM is related to the super-resolution techniques STORM and PALM, which both rely also on
random sampling of the molecular constituents of macromolecular assemblies. In STORM and
PALM substochiometry in labeling is achieved by passive or active switching of a small set of
fluorescent probes between a dark and a bright state. In contrast, in the original implementation
FSM has relied on a population of permanently labeled subunits that dynamically incorporate in
the assembly. In STORM and PALM, substochiometric labeling is exploited to sequentially
collect the coordinates of individual subunits with nanometer precision, i.e. to acquire over time
a super-resolution map of the molecular organization of an assembly. In FSM, substochiometric
labeling is exploited to track in real-time subunit motion, addition and removal. Accordingly, the
spatial resolution of FSM is still diffraction-limited; however, FSM offers information about the
dynamics of a macromolecular assembly no other imaging modality provides. FSM has seen
widespread applications in the research of cytoskeleton dynamics. Under the auspices of the
present grant, my lab has developed the computational approaches required to make FSM a
quantitative imaging technique (qFSM). In collaboration with several experimental groups as
well as by developing FSM imaging capabilities in my own lab we have used qFSM technology
to study the dynamics of the actin and microtubule cytoskeletons and associated molecular
structures in cell morphogenesis, migration and division; and extended the method to the
analysis of transient assembly of cell surface receptors in cellular signaling. Due to its rigid
requirements for diffraction-limited imaging qFSM has been restricted, however, to live imaging
of cells cultured on glass slides, which is entirely unphysiological. Capitalizing on the recent
revolution in light-sheet imaging we propose here to take qFSM to the third dimension in order
to apply its power for unveiling cytoskeleton dynamics in organotypic models of cells and
tissues. This endeavor will require an iterative optimization of i) the design and implementation
of multispectral light-sheet microscopy; ii) the flexible and simultaneous, substoichiometric
labeling of multiple macromolecular assemblies, iii) the development of computational tools for
tracking and interpretation of speckle dynamics in 3D time-lapse volumes. Specifically, in Aim 1,
we will focus on molecular aggregates tracking microtubule plus ends and on clathrin-coated
pits to develop fast 3D image acquisition and highly-sensitive 3D particle tracking methods with
the goal of measuring the lifetime of macromolecular assemblies. In Aim 2, we will focus on the
dynamics of the actomyosin cell cortex during cell polarization to develop robust dual-color
speckle generation and optical-flow based computational methods with the goal of
spatiotemporally mapping rates of molecular turnover and contraction in the cell cortical
network. In Aim 3, we will focus on interactions between actomyosin cell cortex, components of
cell adhesions, and the collagenous 3D microenvironment of cells to develop simultaneous 4-
color image acquisition of speckle patterns and the computational tools for quantification and
visualization of the coupled dynamics of macromolecular assemblies with the goal of testing the
null hypothesis of a molecular clutch between cortical network and cell matrix adhesions in 3D.
All tools will be engineered with an eye towards generalization, so that our technological
innovations can be rapidly deployed to the community for the study of other dynamic cell
structures.
摘要
荧光散斑显微镜(FSM)是一种成像模式,用于可视化和量化
活细胞中大分子组装的动力学。它依赖于大大低于化学计量的
标记感兴趣组件的一个或多个组件。当通过衍射成像时
有限的光学,这种标记产生随机的点状纹理,
时尚运输,机械变形,和分子翻转的组装。因此,在本发明中,
FSM与超分辨率技术STORM和PALM相关,两者都依赖于
随机抽样的分子组成的大分子组件。在风暴和
标记中的PALM亚化学计量是通过一小部分化学计量的被动或主动切换来实现的。
荧光探针之间的黑暗和明亮的状态。相比之下,在最初的实现中,
FSM依赖于一群永久标记的亚基,这些亚基动态地整合到
大会。在STORM和PALM中,利用substochiometric标记来顺序地
以纳米精度收集各个子单元的坐标,即随着时间的推移获取
一个集合体分子组织的超分辨率图。在密克罗尼西亚联邦,
利用标记来实时跟踪子单元运动、添加和移除。因此
FSM的空间分辨率仍然是衍射限制的;然而,FSM提供了关于
大分子组装的动力学没有其他成像模式提供。FSM看到
在细胞骨架动力学研究中有着广泛的应用。主持下
目前,我的实验室已经开发出了使FSM成为一种
定量成像技术(qFSM)。与几个实验小组合作,
通过在我自己的实验室开发FSM成像功能,我们使用了qFSM技术
研究肌动蛋白和微管细胞骨架及其相关分子的动力学,
细胞形态发生,迁移和分裂的结构;并将该方法扩展到
分析细胞信号传导中细胞表面受体的瞬时组装。由于其刚性
然而,衍射限制成像qFSM的要求已被限制为实时成像
在载玻片上培养的细胞,这是完全不符合生理的。利用最近的
我们在这里建议将qFSM带到第三维,以便
应用其力量来揭示细胞器官模型中的细胞骨架动力学,
组织中这一努力将需要迭代优化i)设计和实现
的多光谱光片显微镜; ii)灵活和同时,亚化学计量
标记多个大分子组装体,iii)开发计算工具,
跟踪和解释3D延时体积中的散斑动力学。具体而言,在目标1中,
我们将重点关注跟踪微管加末端的分子聚集体和网格蛋白包被的
开发快速3D图像采集和高灵敏度3D颗粒跟踪方法,
测量大分子集合体寿命的目标。在目标2中,我们将重点关注
在细胞极化过程中肌动球蛋白细胞皮质的动力学,以形成稳健的双色
散斑生成和基于光流的计算方法,其目标是
细胞皮质中分子周转和收缩的时空映射率
网络在目标3中,我们将重点关注肌动球蛋白细胞皮质,
细胞粘附,以及细胞的胶原3D微环境,以同时产生4-
彩色图像采集的散斑图案和计算工具的量化和
可视化的耦合动力学的大分子组件的目标是测试
3D中皮质网络和细胞基质粘附之间的分子离合器的零假设。
所有工具都将着眼于通用化,以便我们的技术
创新可以迅速部署到社会上的其他动态细胞的研究
结构.
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imaging assay to probe the role of telomere length shortening on telomere-gene interactions in single cells.
- DOI:10.1007/s00412-020-00747-4
- 发表时间:2021-03
- 期刊:
- 影响因子:1.6
- 作者:Zhang N;Li Y;Lai TP;Shay JW;Danuser G
- 通讯作者:Danuser G
Pre-complexation of talin and vinculin without tension is required for efficient nascent adhesion maturation.
- DOI:10.7554/elife.66151
- 发表时间:2021-03-30
- 期刊:
- 影响因子:7.7
- 作者:Han SJ;Azarova EV;Whitewood AJ;Bachir A;Guttierrez E;Groisman A;Horwitz AR;Goult BT;Dean KM;Danuser G
- 通讯作者:Danuser G
Dynamic macrophage "probing" is required for the efficient capture of phagocytic targets.
- DOI:10.1083/jcb.201007056
- 发表时间:2010-12-13
- 期刊:
- 影响因子:0
- 作者:Flannagan RS;Harrison RE;Yip CM;Jaqaman K;Grinstein S
- 通讯作者:Grinstein S
plusTipTracker: Quantitative image analysis software for the measurement of microtubule dynamics.
- DOI:10.1016/j.jsb.2011.07.009
- 发表时间:2011-11
- 期刊:
- 影响因子:3
- 作者:Applegate, Kathryn T.;Besson, Sebastien;Matov, Alexandre;Bagonis, Maria H.;Jaqaman, Khuloud;Danuser, Gaudenz
- 通讯作者:Danuser, Gaudenz
Automated screening of microtubule growth dynamics identifies MARK2 as a regulator of leading edge microtubules downstream of Rac1 in migrating cells.
- DOI:10.1371/journal.pone.0041413
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Nishimura Y;Applegate K;Davidson MW;Danuser G;Waterman CM
- 通讯作者:Waterman CM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gaudenz Danuser其他文献
Gaudenz Danuser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gaudenz Danuser', 18)}}的其他基金
UTSW-UNC Center for Cell Signaling Analysis
UTSW-UNC 细胞信号分析中心
- 批准号:
10412148 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
UTSW-UNC Center for Cell Signaling Analysis
UTSW-UNC 细胞信号分析中心
- 批准号:
10705616 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
- 批准号:
10221568 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
- 批准号:
10379219 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Imaging mechanisms of metastatic tumor formation in situ
原位转移性肿瘤形成的成像机制
- 批准号:
10374648 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
- 批准号:
10612345 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Imaging mechanisms of metastatic tumor formation in situ
原位转移性肿瘤形成的成像机制
- 批准号:
10684857 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 40.5万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 40.5万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 40.5万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 40.5万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 40.5万 - 项目类别:














{{item.name}}会员




