Plaque Risk Stratification Using Routinely Available CCTA to Optimize Therapeutic Decision-making in Patients with Known or Suspected Coronary Artery Disease
使用常规 CCTA 进行斑块风险分层,优化已知或疑似冠状动脉疾病患者的治疗决策
基本信息
- 批准号:9752019
- 负责人:
- 金额:$ 99.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse eventAngiographyApplications GrantsArterial Fatty StreakArtificial IntelligenceAtherosclerosisBedsBiologicalCaliberCardiacCardiovascular DiseasesCardiovascular systemCategoriesCharacteristicsClassificationClientClinicalClinical TrialsCollectionComplementComputer AssistedComputer softwareConsensusConsumptionCoronaryCoronary ArteriosclerosisDataData SetDecision MakingDetectionDevicesDiagnosisDigital Imaging and Communications in MedicineElectronic Health RecordEventGoalsGrantHistologicHistologyImageImage AnalysisIndividualIndustryLabelLengthLesionLinkLipidsManualsMathematicsMeasurementMethodsModalityModelingMolecularMorphologyNatureNecrosisPathologistPathway interactionsPatientsPerformancePhenotypeProceduresProcessProtocols documentationReaderReportingResearchResolutionRetrospective cohortRiskRisk stratificationRuptureSamplingSecondary toSeveritiesSolidSpecimenSpeedStenosisStructureSystemTechnologyTherapeuticTimeTissuesTranslatingValidationX-Ray Computed Tomographybasebioimagingbiomarker panelcohortconvolutional neural networkcostdeep learningimprovedimproved outcomein vivoinnovationmeetingsmulti-scale modelingnoninvasive diagnosisnovelnovel strategiesnovel therapeuticspreventprospectivequantitative imagingreconstructionresearch clinical testingrisk prediction modelscale upsoftware as a servicestandard of caresuccesstool
项目摘要
Project Summary/Abstract
New treatments have been revolutionary in improving outcomes over the last 30 years, yet cardiovascular
disease still exerts a $320B annual burden on the US economy. Increasing evidence is showing that Coronary
CT Angiography (CCTA) may be an ideal modality to fill gaps in understanding the extent and rate of
progression coronary artery disease. But despite the apparent promise of CCTA, there are barriers that
prevent realizing the improvement that it theoretically provides. Currently available solutions do not overcome
the barriers – a new approach is needed.
Elucid Bioimaging has developed an image analysis software product vascuCAP (CAP stands for Computer
Aided Phenotyping) to accurately quantify structural and morphological characteristics of plaque tissues linked
to plaque rupture vulnerability. Fundamental to our approach is validated, objective quantitative accuracy;
vascuCAP enjoys the most robust and well documented analytic validation of any plaque morphology software
available. vascuCAP is the only system to mitigate specific issues in CT reconstruction known to effect
accurate measurement of atherosclerotic plaque composition in routinely acquired CTA; it is the only system to
effectively leverage objective tissue characterization validated by histology across multiple arterial beds; it
achieves an effective resolution with routinely acquired CTA in the same ballpark as IVUS VH, based on solid
mathematics principles that respect the Nyquist-Shannon sampling theorem; and it innovates by novel
reporting that expresses the findings in a manner that fits efficiently into existing clinical workflows. vascuCAP
has been implemented in a client-server model supporting SaaS.
Working from our strong current device clearances, this research strategy is developed based on approved
meeting notes from the FDA pre-submission process Phenotype classification claims to be cleared through
direct De Novo pathway on the basis of accurately determining the class from in vivo CTA data relative to
pathologist annotation on ex vivo specimen data. Risk prediction claims: validate ability to predict adverse
events at one year, adding the IFU according to the direct De Novo pathway, One does not strictly depend on
the other.This proposal is innovative in dealing with two fundamental limitations of the application of artificial
intelligence and deep learning to the analysis of atherosclerosis imaging data. This proposal maximizes use of
available retrospective data while putting in place the necessary structure for prospective validation and scale
up. This proposal further develops vascuCAP as a tool that may reduce cost and length of clinical trials.
While out of scope for this grant, it is important to also note that vascuCAP is innovative in its ability to support
multi-scale modeling across cellular/molecular-level analyses and macroscopic manifestation. Also,
vascuCAP’s quantitative ability makes it ideal for analysis of more advanced CT imaging protocols. These
attributes complement and support the proposed objectives.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew John Buckler其他文献
Andrew John Buckler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew John Buckler', 18)}}的其他基金
vascuCAP: Non-invasive Computer-Aided Phenotyping of Vasculopathy
vascuCAP:血管病的非侵入性计算机辅助表型分析
- 批准号:
8981985 - 财政年份:2015
- 资助金额:
$ 99.15万 - 项目类别:
相似海外基金
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
- 批准号:
478732 - 财政年份:2023
- 资助金额:
$ 99.15万 - 项目类别:
Operating Grants
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
- 批准号:
2322379 - 财政年份:2023
- 资助金额:
$ 99.15万 - 项目类别:
Cooperative Agreement
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
- 批准号:
10588086 - 财政年份:2023
- 资助金额:
$ 99.15万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 99.15万 - 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
- 批准号:
2886357 - 财政年份:2023
- 资助金额:
$ 99.15万 - 项目类别:
Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
- 批准号:
23K14839 - 财政年份:2023
- 资助金额:
$ 99.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
- 批准号:
23K19795 - 财政年份:2023
- 资助金额:
$ 99.15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
- 批准号:
10656644 - 财政年份:2023
- 资助金额:
$ 99.15万 - 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
- 批准号:
10759721 - 财政年份:2023
- 资助金额:
$ 99.15万 - 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
- 批准号:
2205265 - 财政年份:2022
- 资助金额:
$ 99.15万 - 项目类别:
Standard Grant














{{item.name}}会员




