Identifying Children and Teens at Risk for Early Onset Alcohol Use: An Innovative Application of Machine Learning Algorithms to Prevention
识别有早期饮酒风险的儿童和青少年:机器学习算法在预防中的创新应用
基本信息
- 批准号:9753696
- 负责人:
- 金额:$ 4.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-30 至 2020-07-12
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAdolescentAdultAdvertisingAgeAlcohol abuseAlcohol consumptionAlcohol dependenceAlgorithmsAmericanAttentionBehavioralChildChildhoodCocaine DependenceComorbidityDataData SetDependenceDevelopmentEngineeringFraudFutureGoalsImpulsivityIndividualLassoLeast-Squares AnalysisLogistic RegressionsLongitudinal StudiesMachine LearningMethodsModelingNatureNoiseOutcomePerformancePreventionPreventive InterventionProbabilityProceduresPublic HealthRecommendationResearchResourcesRestRiskSamplingSensitivity and SpecificityServicesStatistical MethodsStructureSubstance abuse problemTechniquesTeenagersTestingTimeLineTrainingVictimizationWorkaddictionalcohol screeningbaseclassification treescomputer scienceconduct problemcostdata miningearly alcohol useearly onsetfield studyimprovedinnovationlearning strategylongitudinal datasetmachine learning algorithmmultidrug abuseoutcome predictionprediction algorithmpredictive modelingpreventprospectivepsychologicrandom forestscreeningsearch enginespamspeech recognitionstatisticssuccessunderage drinkingvector
项目摘要
PROJECT SUMMARY
Early onset of alcohol use during adolescence is associated with increased probability of later alcohol
dependence, polydrug abuse, victimization, conduct problems, psychiatric comorbidities, and delayed
achievement of adult milestones. Methods that yield rapid, accurate, and reliable predictions of which children
and teens are at risk for early onset can improve the targeting of prevention interventions and enable the
concentration of resources on the most debilitating and costly cases. One promising and untapped approach
to this prediction problem is machine learning (also called “statistical learning,” “data mining,” or “predictive
modeling”), a class of techniques arising from statistics, computer science, and engineering that seeks to build
data-driven predictive algorithms. These techniques are most noticeably distinguished from “traditional”
statistical methods (e.g., ordinary least squares regression) by their extreme emphasis on prediction of future
cases, rather than explanation of the current data, and thus they may offer dramatic advantages over
traditional approaches to identifying which children and teens will develop early onset alcohol use. This
proposal will explore the potential contribution of machine learning methods by directly comparing their
predictive performance to that of the traditional approach in a large-scale, multisite longitudinal study of the
development of early onset alcohol use (N = 731). If machine learning methods do significantly outperform the
traditional approach, future directions might include the development and implementation of machine-learning-
based screening methods for real-world use. On the other hand, if machine learning methods do not
outperform the traditional approach, this will suggest that at least in the context of the present study (i.e., these
predictors, timeline, and outcome), machine learning does not improve the prediction of early onset alcohol
use. Analyses will investigate whether the performance of machine learning methods varies across the nature
of predictor variables use, the age span covered, and the outcome to be predicted. Thus, the current proposal
uses an extant longitudinal dataset to carry out two specific aims: (1) Train five different machine learning
algorithms and one traditional algorithm (ordinary logistic regression) for predicting later early onset alcohol
use in a subset (70%) of the data. (2) Test these six predictive algorithms on the rest (30%) of the data and
directly compare their predictive performance in multiple contexts.
项目摘要
青春期早期饮酒与后期饮酒的可能性增加有关
依赖,多种药物滥用,受害,行为问题,精神病合并症,和延迟
成人里程碑的实现。快速、准确、可靠地预测哪些儿童
和青少年有早发风险,可以提高预防干预措施的针对性,
将资源集中在最具破坏性和费用最高的案件上。一种有前途但尚未开发的方法
机器学习(也称为“统计学习”、“数据挖掘”或“预测学习”)
建模”),一类技术,从统计学,计算机科学和工程,旨在建立
数据驱动的预测算法这些技术与“传统”技术有着最明显的区别。
统计方法(例如,普通最小二乘回归)通过他们的极端强调预测未来
案例,而不是对当前数据的解释,因此,它们可能提供显着的优势,
传统的方法来确定哪些儿童和青少年将发展早发性饮酒。这
该提案将通过直接比较机器学习方法的潜在贡献,
在一项大规模、多地点的纵向研究中,
早发性饮酒(N = 731)。如果机器学习方法确实显著优于
传统的方法,未来的方向可能包括开发和实施机器学习,
为现实世界的使用筛选方法。另一方面,如果机器学习方法不
优于传统方法,这将表明,至少在本研究的背景下(即,这些
预测因子、时间轴和结果),机器学习并不能改善对早发性酒精的预测
使用.分析将调查机器学习方法的性能是否在自然界中存在差异。
预测变量的使用,覆盖的年龄跨度,以及要预测的结果。因此,目前的提案
使用现有的纵向数据集来实现两个特定目标:(1)训练五种不同的机器学习
算法和一个传统的算法(普通逻辑回归)预测晚早发性酒精
在数据的子集(70%)中使用。(2)在其余(30%)的数据上测试这六种预测算法,
直接比较它们在多个上下文中的预测性能。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Validating a brief screening measure for early-onset substance use during adolescence in a diverse, nationwide birth cohort.
- DOI:10.1016/j.addbeh.2022.107277
- 发表时间:2022-06
- 期刊:
- 影响因子:4.4
- 作者:Pelham, William E., III;Corbin, William R.;Meier, Madeline H.
- 通讯作者:Meier, Madeline H.
Estimating classification consistency of screening measures and quantifying the impact of measurement bias.
- DOI:10.1037/pas0000938
- 发表时间:2021-07
- 期刊:
- 影响因子:3.6
- 作者:Gonzalez O;Georgeson AR;Pelham WE;Fouladi RT
- 通讯作者:Fouladi RT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Ellerbe Pelham III其他文献
William Ellerbe Pelham III的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Ellerbe Pelham III', 18)}}的其他基金
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Family processes underlying adolescent substance use and conduct problems: disentangling correlation and causation
青少年物质使用和行为问题背后的家庭过程:理清相关性和因果关系
- 批准号:
10577848 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
The impact of the COVID-19 pandemic on adolescent drinking in a longitudinal cohort spanning 21 U.S. cities
跨越美国 21 个城市的纵向队列研究了 COVID-19 大流行对青少年饮酒的影响
- 批准号:
10579328 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
Family processes underlying adolescent substance use and conduct problems: disentangling correlation and causation
青少年物质使用和行为问题背后的家庭过程:理清相关性和因果关系
- 批准号:
10427677 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
The impact of the COVID-19 pandemic on adolescent drinking in a longitudinal cohort spanning 21 U.S. cities
跨越美国 21 个城市的纵向队列研究了 COVID-19 大流行对青少年饮酒的影响
- 批准号:
10471042 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
相似海外基金
Enhancing Structural Competency in School-Based Health Centers to Address LGBTQ+ Adolescent Health Equity
增强校本健康中心的结构能力,以解决 LGBTQ 青少年健康公平问题
- 批准号:
10608426 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Application and feasability of a brief digital screening tool to address parental and adolescent tobacco and electronic cigarette use in pediatric medical care - a pilot study
简短的数字筛查工具的应用和可行性,以解决儿科医疗中父母和青少年烟草和电子烟的使用问题 - 一项试点研究
- 批准号:
486580 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
Studentship Programs
Co-design of an intervention to address alcohol use among adolescent boys and young men in Tanzania
共同设计一项干预措施,解决坦桑尼亚青春期男孩和年轻男性的饮酒问题
- 批准号:
MR/V032380/1 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
Research Grant
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/1 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Research Grant
Application of a brief digital screening tool to address parental and adolescent tobacco and electronic cigarette use in pediatric medical care
应用简短的数字筛查工具来解决儿科医疗中父母和青少年烟草和电子烟的使用问题
- 批准号:
455984 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Operating Grants
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/2 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Research Grant
Development of the Cannabis Actions and Practices (CAP): A Parent-Focused Intervention to Address Adolescent Marijuana Use
大麻行动和实践 (CAP) 的发展:以家长为中心的干预措施,解决青少年大麻使用问题
- 批准号:
10057761 - 财政年份:2020
- 资助金额:
$ 4.37万 - 项目类别:
Development of the Cannabis Actions and Practices (CAP): A Parent-Focused Intervention to Address Adolescent Marijuana Use
大麻行动和实践 (CAP) 的发展:以家长为中心的干预措施,解决青少年大麻使用问题
- 批准号:
10213683 - 财政年份:2020
- 资助金额:
$ 4.37万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 4.37万 - 项目类别:
Designing targeted interventions to address HIV vulnerabilities and improve clinical outcomes among conflict affected adolescent girls and young women under 25 in Northern Uganda
设计有针对性的干预措施,以解决乌干达北部受冲突影响的少女和 25 岁以下年轻妇女的艾滋病毒脆弱性并改善临床结果
- 批准号:
356145 - 财政年份:2016
- 资助金额:
$ 4.37万 - 项目类别:
Operating Grants














{{item.name}}会员




