Atomically Precise Nanoparticles with Multivalent Capabilities
具有多价功能的原子级精确纳米粒子
基本信息
- 批准号:9753274
- 负责人:
- 金额:$ 36.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAirBenignBindingBiologicalBiologyChemicalsChemistryComplexDefectDevelopmentDiagnosticDimensionsDiseaseElementsEngineeringEventExhibitsGoldHybridsIn VitroLeadLigandsMetalsMolecularNatureOligonucleotidesOrganismPeptidesPositioning AttributeProcessPropertyProteinsResearchResearch PersonnelStatistical DistributionsStructureSystemTherapeuticTimeUncertaintyViralWorkbasebiomacromoleculecombatdesignenhancing factorfunctional groupimprovedmaterials sciencenanomaterialsnanoparticlenanosystemsprogramsreceptorsmall moleculethree dimensional structuretool
项目摘要
Project Summary
Unlike proteins and small-molecules, hybrid nanoparticle assemblies are never atomically precise and
therefore have non-uniform composition and size. This fundamentally limits the researcher's ability to precisely
engineer recognition and binding properties of these assemblies. This is especially true of a large class of
hybrid noble metal nanoparticles including gold-based systems (AuNPs). Weak metal-ligand interactions
contribute to a statistical distribution of defects and positional uncertainty of ligands around the metal core,
limiting their molecular precision. Consequently, inherent polydispersity features of hybrid nanoparticles leads
to their diminished selectivity when they are designed to target and bind biomacromolecules. Furthermore,
under relatively benign conditions, weak metal-ligand interactions in the hybrid nanoparticles can result in
scrambling events and ultimately degradation. Therefore, the status quo in the field largely centers on our
inability to rationally address structure-function properties of hybrid nanomaterials.
Our proposed effort can be characterized as a “nanoparticle total synthesis”, where we are utilizing a
bottom-up approach for the synthesis of large hybrid molecules using atomically precise 3D inorganic clusters
as rigid templates. Specifically, we propose a new strategy for building robust, atomically precise hybrid
nanomolecules using air-stable inorganic clusters densely decorated with perfluoroaromatic functional groups.
This strategy is very appealing given its similarity to the synthesis of AuNPs; however, in this case, the
resulting structures maintain full atomic precision and exhibit dramatically improved stability due to the full
covalency of the resulting systems. We will use this strategy for facile attachment of receptor building blocks
and positioning these in three-dimensions with an atomic precision. For our studies, we will work on developing
multivalent species capable of binding and sensing biomolecules under biologically relevant conditions. We will
work to understand three-dimensional structures of our assemblies and how the size and dynamics in these
systems affects “perfect” target binding. Atomic precision of these species will enable us to conduct structural
studies to precisely pinpoint these interactions. We will study a cooperative binding of the peptide-grafted
clusters with multiple sub-components of the viral entry machinery; and show how an atomically precise
nanomolecules grafted with oligonucleotides can be evolved as binders using in vitro selection.
Ultimately, our work will help to promote a thorough understanding of the design rules governing
interactions between hybrid nanomaterials and biomolecules and elucidate the dominant factors that enhance
specific inhibition of complex biomolecular targets. For the first time, combining elements of inorganic cluster
chemistry, chemical biology and materials science we will enable researchers to create well-defined
programmable nanosystems with unique capabilities for binding and sensing complex biomolecules.
项目摘要
与蛋白质和小分子不同,杂化纳米颗粒组装永远不会在原子上精确和
因此会有不均匀的成分和尺寸。这从根本上限制了研究人员准确地
工程师对这些组件的识别和绑定属性。尤其是对于一大批
混合贵金属纳米颗粒,包括基于金的体系(AuNPs)。弱金属-配体相互作用
有助于金属核周围的配位体的缺陷和位置不确定性的统计分布,
限制了它们的分子精确度。因此,杂化纳米颗粒固有的多分散性特征领先于
当它们被设计成靶向和结合生物大分子时,它们的选择性降低。此外,
在相对有利的条件下,杂化纳米颗粒中弱的金属-配体相互作用可以导致
混乱的事件和最终的退化。因此,该领域的现状主要集中在我们的
无法合理解决杂化纳米材料的结构-功能特性。
我们提出的努力可以被描述为“纳米粒子全合成”,我们利用一种
自下而上利用原子精密三维无机簇合物合成大分子杂化分子
作为刚性模板。具体地说,我们提出了一种新的策略,用于构建健壮的、原子精确的混合动力
纳米分子使用空气稳定的无机簇合物,稠密地装饰着全氟芳香官能团。
这一策略非常吸引人,因为它与AuNPs的合成相似;然而,在这种情况下,
最终得到的结构保持了完全的原子精度,并由于完全的
得到的体系的共价性。我们将使用这种策略来方便地连接受体构建块
并以原子的精度在三维中定位它们。对于我们的学习,我们将致力于开发
能够在生物相关条件下结合和感应生物分子的多价物种。我们会
努力了解我们组件的三维结构,以及这些组件中的大小和动力学
系统会影响“完美”的目标绑定。这些物种的原子精确度将使我们能够进行结构
精确定位这些相互作用的研究。我们将研究一种接枝肽的协同结合
带有病毒进入机制的多个子组件的集群;并展示了原子精确度如何
通过体外选择,嫁接了寡核苷酸的纳米分子可以进化为结合剂。
最终,我们的工作将有助于促进对以下设计规则的彻底理解
杂化纳米材料与生物分子的相互作用及其影响因素
对复杂生物分子靶标的特异性抑制。首次将无机簇合物的元素结合在一起
化学、化学生物学和材料科学,我们将使研究人员能够创造出明确的
具有结合和传感复杂生物分子的独特能力的可编程纳米系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Michael Spokoyny其他文献
Alexander Michael Spokoyny的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Michael Spokoyny', 18)}}的其他基金
Inorganic Chemistry Tools for Bioconjugation, Recognition and Imaging
用于生物共轭、识别和成像的无机化学工具
- 批准号:
10797628 - 财政年份:2017
- 资助金额:
$ 36.91万 - 项目类别:
Inorganic Chemistry Tools for Bioconjugation, Recognition and Imaging
用于生物共轭、识别和成像的无机化学工具
- 批准号:
10406790 - 财政年份:2017
- 资助金额:
$ 36.91万 - 项目类别:
Atomically Precise Nanoparticles with Multivalent Capabilites
具有多价功能的原子级精确纳米粒子
- 批准号:
9919320 - 财政年份:2017
- 资助金额:
$ 36.91万 - 项目类别:
Atomically Precise Nanoparticles with Multivalent Capabilities
具有多价功能的原子级精确纳米粒子
- 批准号:
9381398 - 财政年份:2017
- 资助金额:
$ 36.91万 - 项目类别:
Inorganic Chemistry Tools for Bioconjugation, Recognition and Imaging
用于生物共轭、识别和成像的无机化学工具
- 批准号:
10684710 - 财政年份:2017
- 资助金额:
$ 36.91万 - 项目类别:
Metal Catalyzed CN and CS Bond Forming Reactions for Bioconjugation Targets
金属催化生物共轭靶标的 CN 和 CS 键形成反应
- 批准号:
8309581 - 财政年份:2012
- 资助金额:
$ 36.91万 - 项目类别:
Metal Catalyzed CN and CS Bond Forming Reactions for Bioconjugation Targets
金属催化生物共轭靶标的 CN 和 CS 键形成反应
- 批准号:
8458782 - 财政年份:2012
- 资助金额:
$ 36.91万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Research Grant