Inorganic Chemistry Tools for Bioconjugation, Recognition and Imaging
用于生物共轭、识别和成像的无机化学工具
基本信息
- 批准号:10406790
- 负责人:
- 金额:$ 37.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffinityAreaBindingBiologicalBoronCellsChemistryCommunitiesDevelopmentDiagnosticDiseaseElectron MicroscopyFluorescent DyesFundingGoldGrowth FactorHybridsImageImaging TechniquesInorganic ChemistryKineticsKnowledgeLabelLaboratoriesLeadLigandsMembraneMetalsMethodsModernizationModificationMolecularOrganellesPeptidesPositioning AttributePositron-Emission TomographyProcessProtein InhibitionProteinsReactionReagentResearchStainsSulfhydryl CompoundsSurfaceTherapeuticVirusWorkbasebiomaterial compatibilitycell growthcombatcovalent bondfluorophorefunctional groupinterestlight microscopymetallicitymicroscopic imagingmultimodalitynanoGoldnanoparticlereceptorscaffoldsmall moleculetool
项目摘要
Project Summary/Abstract
Our laboratory is interested in developing new inorganic chemistry tools to address unmet needs in the
areas of bioconjugation, recognition, and imaging. In order to tackle these challenges, new molecular scaffolds
and biocompatible chemistry are crucial. The overall objective of this competitive MIRA renewal application is to
further advance the field of organomimetic boron cluster chemistry. Organomimetic features of these clusters
arise from 1) their ability to undergo facile functionalization chemistry with a wide array of substituents, forming
stable covalent bonds attached to the cluster¢s vertices and 2) unique 3D aromaticity, rendering these clusters
amenable for several modes of microscopy imaging. Within the scope of this work is also a set of new, rapid
organometallic transformations that were discovered during the original cycle of the MIRA funding that would
allow one to rationally tether boron clusters and other molecules under biologically relevant conditions.
Our laboratory is interested in developing new transformations that mimic the operational simplicity with
which thiol ligands normally assemble onto a metallic gold surface. This chemistry has previously revolutionized
the ease with which we can create hybrid noble metal nanoparticles (e.g., thiol capped gold nanoparticles -
AuNPs). However, these hybrid AuNPs are not atomically precise, and the ligand corona is dynamic. These
features lead to hybrids with a non-uniform composition and size, ultimately limiting their applications for the
inhibition of protein-biomolecule interactions. Addressing this challenge, we have developed organometallic-
based methods for cluster modification, providing a covalently tethered dense corona of functional biomolecules
and ligands spatially arranged with three-dimensional precision. We propose to further expand this approach to
rapidly build up sophisticated atomically-precise 3D nanomolecules for multivalent binding to various biological
targets, including virus entry receptors, biological membranes, and cellular growth factors. We also propose to
utilize the inherent robustness and reaction kinetics associated with the developed Au-based reagents for
biomolecular positron-emission tomography (PET) labeling. We have also been engaged in the development of
new boron cluster chemistry, allowing for the positioning of multiple reactive functional groups on a three-
dimensional cluster and use these rigid 3D species to label and tether biomolecules to achieve unconventional
folding and recognition. We propose chemistry that will enable the labeling of small molecules, peptides, proteins,
and cells with various boron cluster scaffolds, which can subsequently be used as multivalent binders, affinity
tags, and fluorescent-free labels using Raman microscopy imaging. Lastly, we propose the use of
perfunctionalized boron clusters as dual staining/fluorophore agents for correlative light and electron microscopy
(CLEM). Specifically, we will work on developing hybrids that contain heavy atom perfunctionalized boron cluster
stains tethered to a fluorescent dye, which would enable targeting of specific cellular organelles, thereby
providing access to an unprecedented class of photostable and non-toxic agents for CLEM.
项目总结/摘要
我们的实验室有兴趣开发新的无机化学工具,以解决未满足的需求,
生物结合、识别和成像领域。为了应对这些挑战,新的分子支架
和生物相容性化学是至关重要的这种竞争MIRA续期申请的总体目标是
进一步推进有机模拟硼原子簇化学领域。这些簇的有机模拟特征
1)它们能够用广泛的取代基进行容易的官能化化学,
稳定的共价键连接到簇的顶点和2)独特的三维芳香性,使这些簇
适合于几种显微镜成像模式。在这项工作的范围内也是一套新的,快速的
在MIRA资助的原始周期中发现的有机金属转化,
允许人们在生物学相关条件下合理地束缚硼簇和其他分子。
我们的实验室有兴趣开发新的转换,模仿操作简单性,
所述硫醇配体通常组装到金属金表面上。这种化学反应在以前已经彻底改变了
我们可以容易地产生混合贵金属纳米颗粒(例如,硫醇封端的金纳米颗粒-
AuNP)。然而,这些混合金纳米粒子不是原子精确的,并且配体电晕是动态的。这些
这些特征导致混合物具有不均匀的组成和尺寸,最终限制了它们在生物医学领域的应用。
抑制蛋白质-生物分子相互作用。为了应对这一挑战,我们开发了有机金属-
基于簇修饰的方法,提供功能性生物分子的共价束缚的致密冠
和以三维精度空间排列的配体。我们建议进一步扩大这一做法,
快速构建复杂的原子级精确的3D纳米分子,用于多价结合各种生物学
靶点,包括病毒进入受体、生物膜和细胞生长因子。我们亦建议
利用与开发的Au基试剂相关的固有鲁棒性和反应动力学,
生物分子正电子发射断层扫描(PET)标记。我们还参与了
新的硼簇化学,允许在三个-
三维集群,并使用这些刚性的3D物种来标记和拴系生物分子,以实现非常规的
折叠和识别。我们提出了一种化学方法,可以标记小分子,肽,蛋白质,
以及具有各种硼簇支架的细胞,其随后可用作多价结合剂,
标签和无荧光标记,使用拉曼显微成像。最后,我们建议使用
用于相关光学和电子显微术的作为双染色/荧光团试剂的全官能化硼簇
(CLEM)。具体来说,我们将致力于开发包含重原子全官能化硼簇的杂化物
染料拴在荧光染料上,这将使特定的细胞器成为目标,
为CLEM提供了前所未有的光稳定和无毒试剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Michael Spokoyny其他文献
Alexander Michael Spokoyny的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Michael Spokoyny', 18)}}的其他基金
Inorganic Chemistry Tools for Bioconjugation, Recognition and Imaging
用于生物共轭、识别和成像的无机化学工具
- 批准号:
10797628 - 财政年份:2017
- 资助金额:
$ 37.09万 - 项目类别:
Atomically Precise Nanoparticles with Multivalent Capabilities
具有多价功能的原子级精确纳米粒子
- 批准号:
9753274 - 财政年份:2017
- 资助金额:
$ 37.09万 - 项目类别:
Atomically Precise Nanoparticles with Multivalent Capabilites
具有多价功能的原子级精确纳米粒子
- 批准号:
9919320 - 财政年份:2017
- 资助金额:
$ 37.09万 - 项目类别:
Atomically Precise Nanoparticles with Multivalent Capabilities
具有多价功能的原子级精确纳米粒子
- 批准号:
9381398 - 财政年份:2017
- 资助金额:
$ 37.09万 - 项目类别:
Inorganic Chemistry Tools for Bioconjugation, Recognition and Imaging
用于生物共轭、识别和成像的无机化学工具
- 批准号:
10684710 - 财政年份:2017
- 资助金额:
$ 37.09万 - 项目类别:
Metal Catalyzed CN and CS Bond Forming Reactions for Bioconjugation Targets
金属催化生物共轭靶标的 CN 和 CS 键形成反应
- 批准号:
8309581 - 财政年份:2012
- 资助金额:
$ 37.09万 - 项目类别:
Metal Catalyzed CN and CS Bond Forming Reactions for Bioconjugation Targets
金属催化生物共轭靶标的 CN 和 CS 键形成反应
- 批准号:
8458782 - 财政年份:2012
- 资助金额:
$ 37.09万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.09万 - 项目类别:
Research Grant