Dissecting pre- vs postsynaptic actin dynamics in synapse structure and strength
剖析突触结构和强度方面的突触前和突触后肌动蛋白动力学
基本信息
- 批准号:9755095
- 负责人:
- 金额:$ 6.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAMPA ReceptorsActinsAcuteAffectAreaBiochemicalBiologicalBiological FactorsBiologyBrainCellsCellular biologyColorComplexDataDendritic SpinesDiagnosisDiseaseElectrophysiology (science)FacultyFutureGlutamate ReceptorGoalsHippocampus (Brain)ImageImaging TechniquesIn VitroLightLong-Term PotentiationMeasuresMediator of activation proteinMemoryMental disordersMicrofilamentsModelingMolecularMonomeric GTP-Binding ProteinsN-Methyl-D-Aspartate ReceptorsNanostructuresNeuronsNeurosciencesOpticsPathologyPhysiologyPositioning AttributePresynaptic TerminalsProbabilityProcessProteinsPublishingReagentRecombinantsRegulationRoleScienceSideSkeletonStructureSynapsesSynaptic VesiclesTestingTimeUltraviolet RaysVertebral columnWorkactin depolymerizing proteinscareerdepolymerizationdesigndimerexperienceexperimental studyimprovedin vivoinsightnanoclusternanoscaleneurotransmitter releaseoptical imagingoptogeneticspolymerizationpostsynapticpresynapticreceptorreceptor functionscaffoldspatiotemporaltooltool developmenttreatment strategyvesicular release
项目摘要
Bidirectional, spatially restricted actin filament dynamics modify synapses by controlling the structure and
function of each cell creating the synaptic contact. Dynamic actin filaments are disrupted in psychiatric disease,
so understanding their role in regulating pre- vs postsynaptic structure and function will be key for elucidating
molecular mechanisms of memory formation and developing precise disease treatment strategies.
Unfortunately, most existing tools to experimentally manipulate actin lack control of one or more of these
biological factors, making it difficult to parse specific contributions of pre- vs. postsynaptic actin dynamics to
synapse strength. The overarching goal of this proposal is to clarify the particular roles of actin at each
side of the synapse. To facilitate this goal, I propose to develop new tools to spatiotemporally, bidirectionally,
and synapse-specifically manipulate actin dynamics. The tools will be valuable additions to the arsenal of
reagents in diverse fields of neuroscience and in other areas of cell biology. In my project, I will use these tools
to answer two critical questions of how pre- vs postsynaptic actin dynamics regulate synapse strength.
My first aim is to validate tools for precise, bidirectional control of actin dynamics. To drive actin
depolymerization, I will develop photoactivateable (PA) DeActs by caging these published, genetically encodable
actin depolymerizing proteins with photo-dimerizable pdDronpa. To drive actin polymerization, I will optimize an
existing PA-Rac1 probe, which drives actin branching via Arp2/3. This set of tools will be highly useful to broad
areas of science, and I will make new transfectable and recombinant AAV versions publicly available.
My second aim is to elucidate how pre- vs postsynaptic actin regulates subsynaptic nanoorganization.
Pre- and postsynaptic proteins form subsynaptic, nanoscale clusters that align across the synapse, a newly
discovered organization expected to influence synaptic strength. However, we do not understand the biology
that forms and maintains synaptic nanoorganization. My preliminary data suggest alignment requires actin
dynamics, consistent with actin being a key regulator of nanostructure. I will combine my tools and 2-color 3D
dSTORM to determine how actin in each synaptic compartment controls nanoorganization.
My third aim is to interrogate the role of acute actin dynamics in synapse strength. The precise and
independent roles of pre- and postsynaptic actin in synapse strength have been clouded by non-specific
manipulations. I will use the tools developed in Aim 1 in conjunction with in vivo electrophysiology and in vitro
imaging techniques to answer how bidirectional perturbation of presynaptic actin dynamics changes aspects of
vesicle release and whether postsynaptic actin polymerization is sufficient to drive receptor plasticity.
These aims synthesize my biochemical background, my sponsor’s synaptic optical imaging expertise, and the
experience of the diverse UMB faculty to improve our understanding of how actin controls the basic cellular and
molecular physiology of synapses, and provide a strong platform to launch my independent career in science.
双向的、空间受限的肌动蛋白丝动力学通过控制突触的结构来改变突触,
每一个细胞的功能产生的突触接触。动态肌动蛋白丝在精神疾病中被破坏,
因此,了解它们在调节突触前和突触后结构和功能中的作用将是阐明
记忆形成的分子机制和开发精确的疾病治疗策略。
不幸的是,大多数现有的实验性操纵肌动蛋白的工具缺乏对一个或多个这些的控制。
生物因素,使得很难解析突触前与突触后肌动蛋白动力学对突触的具体贡献
突触强度这个建议的首要目标是澄清行动在每个领域的特殊作用
在突触的一侧。为了实现这一目标,我建议开发新的工具,时空,双向,
和突触特异性操纵肌动蛋白动力学。这些工具将是对武器库的宝贵补充,
在神经科学和细胞生物学的其他领域的不同领域的试剂。在我的项目中,我将使用这些工具
来回答两个关于突触前和突触后肌动蛋白动力学如何调节突触强度的关键问题。
我的第一个目标是验证用于精确双向控制肌动蛋白动力学的工具。驱动肌动蛋白
解聚,我将开发光活化(PA)DeActs通过笼这些已发表的,遗传编码
肌动蛋白解聚蛋白与光二聚pdDronpa。为了驱动肌动蛋白聚合,我将优化一个
现有的PA-Rac 1探针,其通过Arp 2/3驱动肌动蛋白分支。这套工具将非常有用,
科学领域,我将使新的可转染和重组的AAV版本公开。
我的第二个目标是阐明突触前和突触后肌动蛋白如何调节突触下的纳米结构。
突触前和突触后蛋白质形成突触下的纳米级簇,这些簇在突触上排列,这是一种新的
发现了有望影响突触强度的组织。然而,我们不了解生物学
形成并维持突触纳米结构我的初步数据表明,
动力学,与肌动蛋白是纳米结构的关键调节剂一致。我将联合收割机我的工具和2色3D
dSTORM以确定每个突触隔室中的肌动蛋白如何控制纳米组织。
我的第三个目标是询问急性肌动蛋白动力学在突触强度中的作用。的准确而
突触前和突触后肌动蛋白在突触强度中的独立作用已经被非特异性的
操纵我将使用目标1中开发的工具,结合体内电生理学和体外
成像技术来回答突触前肌动蛋白动力学的双向扰动如何改变
囊泡释放和突触后肌动蛋白聚合是否足以驱动受体可塑性。
这些目标综合了我的生物化学背景,我的赞助商的突触光学成像专业知识,
不同UMB教师的经验,以提高我们对肌动蛋白如何控制基本的细胞和
突触的分子生理学,并提供了一个强大的平台,开始我的独立科学生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Donald Levy其他文献
Aaron Donald Levy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Donald Levy', 18)}}的其他基金
Dissecting pre- vs postsynaptic actin dynamics in synapse structure and strength
剖析突触结构和强度方面的突触前和突触后肌动蛋白动力学
- 批准号:
10404155 - 财政年份:2021
- 资助金额:
$ 6.12万 - 项目类别:
Integrin-Arg-SHP2 signaling regulates NMDAR function and neuron morphology
整合素-Arg-SHP2信号调节NMDAR功能和神经元形态
- 批准号:
9128713 - 财政年份:2014
- 资助金额:
$ 6.12万 - 项目类别:
Integrin-Arg-SHP2 signaling regulates NMDAR function and neuron morphology
整合素-Arg-SHP2信号调节NMDAR功能和神经元形态
- 批准号:
8781022 - 财政年份:2014
- 资助金额:
$ 6.12万 - 项目类别:
Integrin-Arg-SHP2 signaling regulates NMDAR function and neuron morphology
整合素-Arg-SHP2信号调节NMDAR功能和神经元形态
- 批准号:
8958719 - 财政年份:2014
- 资助金额:
$ 6.12万 - 项目类别:
相似海外基金
Role of PSD-95-linked PDE4A5 in Regulation of AMPA Receptors
PSD-95 连接的 PDE4A5 在 AMPA 受体调节中的作用
- 批准号:
10829146 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2022
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
In vivo Probe for ionotropic glutamate signaling system: AMPA receptors
离子型谷氨酸信号系统体内探针:AMPA 受体
- 批准号:
10584340 - 财政年份:2022
- 资助金额:
$ 6.12万 - 项目类别:
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2021
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2020
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
Binding of Endophilin Endocytic Proteins to AMPA Receptors and Neuronal Voltage-gated Potassium (Kv) Channels: Regulation of Synaptic Plasticity
内亲素内吞蛋白与 AMPA 受体和神经元电压门控钾 (Kv) 通道的结合:突触可塑性的调节
- 批准号:
RGPIN-2015-03850 - 财政年份:2019
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
The missing link: Opioid modulation of AMPA receptors
缺失的环节:阿片类药物对 AMPA 受体的调节
- 批准号:
2253144 - 财政年份:2019
- 资助金额:
$ 6.12万 - 项目类别:
Studentship
Calcium-permeable AMPA receptors and their auxiliary subunits: pharmacological and molecular intervention in health and disease
钙渗透性 AMPA 受体及其辅助亚基:健康和疾病的药理学和分子干预
- 批准号:
MR/T002506/1 - 财政年份:2019
- 资助金额:
$ 6.12万 - 项目类别:
Research Grant
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2019
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
Life cycle of AMPA receptors under acute metabolic stress
急性代谢应激下 AMPA 受体的生命周期
- 批准号:
411538084 - 财政年份:2018
- 资助金额:
$ 6.12万 - 项目类别:
Research Units














{{item.name}}会员




