Integrin-Arg-SHP2 signaling regulates NMDAR function and neuron morphology
整合素-Arg-SHP2信号调节NMDAR功能和神经元形态
基本信息
- 批准号:9128713
- 负责人:
- 金额:$ 2.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescenceAffectAllelesAlzheimer&aposs DiseaseAttenuatedAutistic DisorderBindingBiochemicalBiotinylationCognitive deficitsConfocal MicroscopyDataDefectDendritesDendritic SpinesDiagnosisDiseaseEconomic BurdenElectron MicroscopyElectrophysiology (science)Functional disorderGeneticHeadHealthHippocampus (Brain)Integrin alpha3beta1IntegrinsKnock-inLinkMaintenanceMeasuresMediatingMental RetardationMental disordersMolecularMood DisordersMorphologyMusN-Methyl-D-Aspartate ReceptorsN-MethylaspartateNMDA receptor antagonistNeurodegenerative DisordersNeuronsNoonan SyndromePTPN11 genePathologyPhosphorylationPhosphorylation SitePlayProsencephalonProtein Tyrosine KinaseRegulationRegulatory PathwayRoleSchizophreniaSignal TransductionSiteSliceStructureSurfaceSynapsesTechniquesTestingTherapeutic InterventionTyrosine Phosphorylation SiteVertebral columnaddictionadhesion receptorautism spectrum disorderdensitydevelopmental diseaseexcitatory neurongain of functioninsightmutantnervous system disorderneuron lossreceptor functionresearch studysocialtreatment strategy
项目摘要
DESCRIPTION (provided by applicant): Integrin-Arg-SHP2 signaling regulates NMDAR function and neuron morphology. Dendritic spine stability is disrupted in psychiatric and neurological disorders. Regulation of NMDA receptor (NMDAR) activity by integrin adhesion receptors plays a fundamental role in dendritic spine maturation and stability, but the molecular mechanisms by which integrins regulate NMDARs are unknown. We have shown that loss of integrin α3ß1 signaling through the Abl2/Arg non-receptor tyrosine kinase causes widespread dendritic spine loss in late adolescence due to increased GluN2B subunit-mediated NMDA receptor currents. I provide strong evidence that Arg acts through the tyrosine phosphatase SHP2 to control GluN2B phosphorylation and function. NMDA receptor dysfunction is a hallmark of psychiatric, neurodevelopmental and neurological diseases such as schizophrenia, autism, and Alzheimer's disease. Understanding the mechanism by which integrins regulate NMDAR function is critical to understand how synaptic stability is compromised in these disorders and to develop treatment strategies. In this proposal, I will test the hypothesis that integrin-Arg-SHP2 signaling functionally regulates the NMDA receptor to control dendritic spine stability. My first aim is to determine how SHP2 regulates GluN2B phosphorylation and function. In this aim, I will use substrate-trapping mutants of SHP2 to test whether GluN2B is directly dephosphorylated by SHP2 and to determine which site in GluN2B is targeted by SHP2. GluN2B phosphorylation promotes its surface localization. Therefore, I will also use surface biotinylation of NMDARs in cultured hippocampal neurons to measure how genetic and pharmacological loss- or gain-of-function of Arg and SHP2 influence NMDAR surface expression. My second aim is to elucidate an integrin-NMDA receptor regulatory mechanism. GluN2B phosphorylation increases NMDAR-mediated currents, and my preliminary data show that activation of SHP2 decreases GluN2B phosphorylation. To test how SHP2 regulates NMDAR function, I will measure how loss- or gain-of-function of SHP2 activity affects NMDAR-mediated currents in hippocampal slices. I will also test the hypothesis that SHP2 functions as a mechanistic link between integrin-Arg signaling and the NMDAR by assessing whether an SHP2 gain-of-function allele can suppress elevated NMDAR currents in mice lacking integrin α3ß1 or Arg. My third aim is to understand how SHP2 regulates dendritic spine and synapse structure. Our lab has shown that integrin-Arg signaling attenuates NMDAR activity to stabilize spines, and I hypothesize that SHP2 mediates the effects of Arg signaling on NMDAR function. I will use confocal and electron microscopy to quantitatively measure how loss- and gain-of-function of SHP2 activity in mice affects dendritic spine and synapse structure and stability. I will also test whether an activated SHP2 allele can suppress the spine destabilization resulting from loss of integrin α3ß1 or Arg in mice.
DESCRIPTION (provided by applicant): Integrin-Arg-SHP2 signaling regulates NMDAR function and neuron morphology. Dendritic spine stability is disrupted in psychiatric and neurological disorders. Regulation of NMDA receptor (NMDAR) activity by integrin adhesion receptors plays a fundamental role in dendritic spine maturation and stability, but the molecular mechanisms by which integrins regulate NMDARs are unknown. We have shown that loss of integrin α3ß1 signaling through the Abl2/Arg non-receptor tyrosine kinase causes widespread dendritic spine loss in late adolescence due to increased GluN2B subunit-mediated NMDA receptor currents. I provide strong evidence that Arg acts through the tyrosine phosphatase SHP2 to control GluN2B phosphorylation and function. NMDA receptor dysfunction is a hallmark of psychiatric, neurodevelopmental and neurological diseases such as schizophrenia, autism, and Alzheimer's disease. Understanding the mechanism by which integrins regulate NMDAR function is critical to understand how synaptic stability is compromised in these disorders and to develop treatment strategies. In this proposal, I will test the hypothesis that integrin-Arg-SHP2 signaling functionally regulates the NMDA receptor to control dendritic spine stability. My first aim is to determine how SHP2 regulates GluN2B phosphorylation and function. In this aim, I will use substrate-trapping mutants of SHP2 to test whether GluN2B is directly dephosphorylated by SHP2 and to determine which site in GluN2B is targeted by SHP2. GluN2B phosphorylation promotes its surface localization. Therefore, I will also use surface biotinylation of NMDARs in cultured hippocampal neurons to measure how genetic and pharmacological loss- or gain-of-function of Arg and SHP2 influence NMDAR surface expression. My second aim is to elucidate an integrin-NMDA receptor regulatory mechanism. GluN2B phosphorylation increases NMDAR-mediated currents, and my preliminary data show that activation of SHP2 decreases GluN2B phosphorylation. To test how SHP2 regulates NMDAR function, I will measure how loss- or gain-of-function of SHP2 activity affects NMDAR-mediated currents in hippocampal slices. I will also test the hypothesis that SHP2 functions as a mechanistic link between integrin-Arg signaling and the NMDAR by assessing whether an SHP2 gain-of-function allele can suppress elevated NMDAR currents in mice lacking integrin α3ß1 or Arg. My third aim is to understand how SHP2 regulates dendritic spine and synapse structure. Our lab has shown that integrin-Arg signaling attenuates NMDAR activity to stabilize spines, and I hypothesize that SHP2 mediates the effects of Arg signaling on NMDAR function. I will use confocal and electron microscopy to quantitatively measure how loss- and gain-of-function of SHP2 activity in mice affects dendritic spine and synapse structure and stability. I will also test whether an activated SHP2 allele can suppress the spine destabilization resulting from loss of integrin α3ß1 or Arg in mice.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Donald Levy其他文献
Aaron Donald Levy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Donald Levy', 18)}}的其他基金
Dissecting pre- vs postsynaptic actin dynamics in synapse structure and strength
剖析突触结构和强度方面的突触前和突触后肌动蛋白动力学
- 批准号:
10404155 - 财政年份:2021
- 资助金额:
$ 2.83万 - 项目类别:
Dissecting pre- vs postsynaptic actin dynamics in synapse structure and strength
剖析突触结构和强度方面的突触前和突触后肌动蛋白动力学
- 批准号:
9755095 - 财政年份:2019
- 资助金额:
$ 2.83万 - 项目类别:
Integrin-Arg-SHP2 signaling regulates NMDAR function and neuron morphology
整合素-Arg-SHP2信号调节NMDAR功能和神经元形态
- 批准号:
8958719 - 财政年份:2014
- 资助金额:
$ 2.83万 - 项目类别:
Integrin-Arg-SHP2 signaling regulates NMDAR function and neuron morphology
整合素-Arg-SHP2信号调节NMDAR功能和神经元形态
- 批准号:
8781022 - 财政年份:2014
- 资助金额:
$ 2.83万 - 项目类别:
相似海外基金
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Socio-Emotional Characteristics in Early Childhood and Offending Behaviour in Adolescence
幼儿期的社会情感特征和青春期的犯罪行为
- 批准号:
ES/Z502601/1 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Fellowship
Cognitive and non-cognitive abilities and career development during adolescence and adult development: from the perspective of genetic and environmental structure
青春期和成人发展期间的认知和非认知能力与职业发展:从遗传和环境结构的角度
- 批准号:
23K02900 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
- 批准号:
2300937 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
Continuing Grant
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
- 批准号:
10785373 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
The Role of Sleep in the Relationships Among Adverse Childhood Experiences, Mental Health Symptoms, and Persistent/Recurrent Pain during Adolescence
睡眠在不良童年经历、心理健康症状和青春期持续/复发性疼痛之间关系中的作用
- 批准号:
10676403 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
Interdisciplinary Perspectives on the Politics of Adolescence and Democracy
青少年政治与民主的跨学科视角
- 批准号:
EP/X026825/1 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
Research Grant
An Empirical Study on the Influence of Socioeconomic Status in Adolescence on Exercise Habits in Adulthood
青春期社会经济地位对成年期运动习惯影响的实证研究
- 批准号:
23K16734 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




