Structure and Function of Immune Gene Regulatory Networks

免疫基因调控网络的结构和功能

基本信息

项目摘要

PROJECT SUMMARY Gene regulatory networks (GRNs) are central to almost all biological processes. Research in my laboratory focusses on understanding the structure and logic of human GRNs with the ultimate goal of devising strategies for therapeutic interventions. Current gaps in our understanding of GRNs include: determining how combinations of transcription factors (TFs) regulate specific target gene expression patterns, identifying mechanisms by which different genes are co-regulated to effect a given biological response, determining how GRNs are rewired in response to environmental cues, and designing strategies to manipulate GRNs to modulate biological outcomes. Cytokines present an ideal model system to study GRNs because cytokines genes are highly regulated at the transcriptional level and because this regulation involves a complex interplay between cell type-specific TFs and TFs activated by different signaling pathways. In this proposal, we will investigate the structure and regulatory logic of the cytokine GRN by integrating complementary methods to map protein-DNA interactions, functional perturbations, and phenotypic characterizations. Further, we will determine the mechanisms by which virally-encoded TFs perturb the cytokine GRN by determining the targeted cytokine regulatory regions and targeted host proteins such as TFs, cofactors, and signaling proteins. Overall, the proposed studies will identify general principles and generate a framework to study and manipulate GRNs which will ultimately lead to novel strategies impacting human health.
项目摘要 基因调控网络(GRNs)是几乎所有生物过程的核心。研究 在我的实验室,重点是了解人类GRNs的结构和逻辑, 制定治疗干预战略的最终目标。我们目前的差距 对GRNs的理解包括:确定转录因子(TF) 调节特定的靶基因表达模式,确定不同的机制, 基因共同调节以影响给定的生物反应,决定GRNs如何重新连接 对环境线索的反应,并设计策略来操纵GRNs来调节 生物学成果。细胞因子为研究GRNs提供了一个理想的模型系统, 基因在转录水平上受到高度调控,因为这种调控涉及一种 细胞类型特异性TF和由不同信号传导激活的TF之间的复杂相互作用 途径。在这个建议中,我们将研究细胞因子的结构和调控逻辑 GRN通过整合互补方法来绘制蛋白质-DNA相互作用,功能 扰动和表型特征。此外,我们将通过以下方式确定机制 所述病毒编码的TF通过确定靶向细胞因子而干扰细胞因子GRN 调节区和靶向宿主蛋白如TF、辅因子和信号蛋白。 总的来说,拟议的研究将确定一般原则,并提出一个研究框架 并操纵GRNs,这将最终导致影响人类健康的新策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan Ignacio Fuxman Bass其他文献

Juan Ignacio Fuxman Bass的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan Ignacio Fuxman Bass', 18)}}的其他基金

Structure and Function of Immune Gene Regulatory Networks
免疫基因调控网络的结构和功能
  • 批准号:
    10459368
  • 财政年份:
    2018
  • 资助金额:
    $ 41.25万
  • 项目类别:
Structure and Function of Immune Gene Regulatory Networks
免疫基因调控网络的结构和功能
  • 批准号:
    10620447
  • 财政年份:
    2018
  • 资助金额:
    $ 41.25万
  • 项目类别:
Structure and Function of Immune Gene Regulatory Networks
免疫基因调控网络的结构和功能
  • 批准号:
    9980455
  • 财政年份:
    2018
  • 资助金额:
    $ 41.25万
  • 项目类别:
Structure and Function of Immune Gene Regulatory Networks
免疫基因调控网络的结构和功能
  • 批准号:
    10226062
  • 财政年份:
    2018
  • 资助金额:
    $ 41.25万
  • 项目类别:
Delineation of a cytokine gene regulatory network and rewiring in disease
细胞因子基因调控网络的描绘和疾病中的重新布线
  • 批准号:
    9323076
  • 财政年份:
    2015
  • 资助金额:
    $ 41.25万
  • 项目类别:
Delineation of a cytokine gene regulatory network and rewiring in disease
细胞因子基因调控网络的描绘和疾病中的重新布线
  • 批准号:
    8867410
  • 财政年份:
    2015
  • 资助金额:
    $ 41.25万
  • 项目类别:

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 41.25万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 41.25万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 41.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了