Molecular Mechanisms That Control the Quality of Synaptic Vesicle Recycling
控制突触小泡回收质量的分子机制
基本信息
- 批准号:9884786
- 负责人:
- 金额:$ 43.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptor Signaling ProteinAddressAlzheimer&aposs DiseaseBehaviorBindingBiochemistryBiological ModelsBiological ProcessBrainC-terminalCaenorhabditis elegansCell membraneCellular biologyCessation of lifeClathrinClathrin-Coated VesiclesCognitiveCommunicationDataDefectDrosophila genusElectron MicroscopyElectrophysiology (science)EndocytosisEndosomesEnsureEquilibriumExcisionExocytosisFluorescence Recovery After PhotobleachingFoundationsGeneticGoalsHomeostasisHumanImpairmentKnowledgeLeadLearningMammalsMass Spectrum AnalysisMemoryMental disordersMethodologyMolecularMorphologyMovementMusMyeloid-Lymphoid Leukemia ProteinN-terminalNatural regenerationNematodaNeurodegenerative DisordersNeurologicNeuronsNeurotransmittersOrganismPathogenicityPerceptionPhosphatidylinositol 4,5-DiphosphatePhysical activityPlant RootsPlayProcessPropertyProteinsPublic HealthQuality ControlRecyclingRegulationResearchRetrievalRoleSNAP receptorSchizophreniaShapesSignal TransductionSolidSpecificityStructureSynapsesSynaptic TransmissionSynaptic VesiclesTechniquesTimeVesicleWorkbasebrain tissueclathrin assembly protein AP180designgraspinsightinterdisciplinary approachknowledge baselight microscopynervous system disorderneurotransmissionneurotransmitter releasenovelparalogous genephosphatidylinositol phosphate, PtdIns(4,5)P2prematurepresynapticquantitative imagingquantumreceptorsensorsoluble NSF attachment proteinsynaptic functionvesicle-associated membrane protein
项目摘要
Neuronal communication underpins all cognitive and physical activities (i.e., movement, perception, learning,
and memory). High quality communication is essential to maintain organism homeostasis and disruptions lead
to severe consequences. Synaptic vesicles (SVs) store and release neurotransmitters and serve as
morphological counterparts of the neurotransmitter quanta. Thus, both morphology and function of SVs have
significant implications in the quantal information transmitted from one neuron to another. The activity of SVs is
highly dynamic. Upon arrival of Ca2+ signals, SVs fuse with the plasma membrane and release their
neurotransmitter content through exocytosis. After exocytosis, SVs are incorporated into the plasma
membrane and then must be retrieved into newly formed vesicles by SV endocytosis. This SV recycling is one
of the best-orchestrated biological processes known, and at the same time, many of the intricate mechanisms
that govern recycling remain unknown. It is imperative to gain a grasp of the mechanisms as scientific research
recognizes that defects in vesicle property creates deficits in synaptic transmission, a common failing that
underlies various forms of neurological and psychiatric disorders. The long-term goal of our work is to elucidate
the fundamental mechanisms underlying effective neuronal communication by ensuring quality of SVs. AP180,
a 180-kD adapter protein isolated from brain tissues, has been identified as a critical presynaptic protein and
major component of clathrin-coated vesicles. AP180 has been implicated in human psychiatric and
neurodegenerative disorders including schizophrenia and Alzheimer’s disease. Genetic data demonstrate that
AP180 has crucial roles in controlling the morphology and protein composition of SVs and its disruption causes
synaptic defects in worms, fruit flies, and mice. Using the nematode C. elegans as a model system, we plan to
investigate and firmly establish the role of AP180 in maintaining both morphological and functional integrity of
SVs in this project. We will design and employ state-of-the-art genetics, cell biology, biochemistry, and
electrophysiological techniques to dissect the role of AP180. The proposal has three specific aims and
addresses 1) the central role of AP180 in a two-step mechanism for SV recycling, 2) the intriguing activity-
dependent regulation of AP180 dynamics at the synapse, and 3) the AP180-dependent mechanism that
controls the size of SVs. We have built our hypotheses on solid knowledge base; our incisive methodologies
have strong prospects to yield deep insights into SV recycling. The knowledge gained on the function,
dynamics, and specificity of AP180 has broad ramifications in synaptic activity and brain function. Together,
our studies hold promise to push boundaries of the current knowledge of synaptic transmission and broaden
horizons with a strong potential to unravel the neurological intricacies and invent solutions for neurological
disorders.
神经元交流是所有认知和身体活动的基础(即,运动、感知、学习、
和内存)。高质量的沟通对维持机体的动态平衡至关重要,而干扰会导致
带来严重的后果。突触小泡(SVS)储存和释放神经递质,作为
神经递质量子的形态对应。因此,SVS的形态和功能都具有
从一个神经元传递到另一个神经元的量子信息中的重要含义。SVS的活性是
动感十足。当钙离子信号到达时,SVS与质膜融合并释放其
胞吐作用中的神经递质含量。胞吐后,SVS被合并到血浆中
膜,然后必须通过SV内吞作用被回收到新形成的囊泡中。这个SV回收是一个
已知的最协调的生物过程,同时,许多错综复杂的机制
管理回收的机构仍然不为人知。当务之急是把机理作为科学研究来把握。
认识到囊泡特性的缺陷会导致突触传递的缺陷,这是一种常见的缺陷
是各种形式的神经和精神障碍的基础。我们工作的长期目标是澄清
通过确保SVS的质量来实现有效神经元交流的基本机制。AP180、
从脑组织中分离出一种180kD的适配蛋白,已被鉴定为一种关键的突触前蛋白,并
包膜囊泡的主要成分。AP180已被牵连到人类精神疾病和
神经退行性疾病,包括精神分裂症和阿尔茨海默病。基因数据表明
AP180在控制SVS的形态和蛋白质组成及其破坏原因中起着至关重要的作用
蠕虫、果蝇和小鼠的突触缺陷。以线虫线虫为模型系统,我们计划
研究并确定AP180在维持心肌细胞形态和功能完整性中的作用
在这个项目中的SVS。我们将设计和使用最先进的遗传学、细胞生物学、生物化学和
电生理学技术剖析AP180的作用。该提案有三个具体目标和
1)AP180在SV回收两步机制中的核心作用,2)耐人寻味的活动-
AP180对突触动力学的依赖调节,以及3)AP180依赖的机制
控制SVS的大小。我们的假设建立在坚实的知识基础上;我们精辟的方法
有很强的前景,对SV回收有深刻的见解。在函数上获得的知识,
AP180的动力学和特异性对突触活性和脑功能有广泛的影响。一起,
我们的研究有望突破现有突触传递知识的界限,拓宽
有很大潜力解开神经学的错综复杂并发明神经学解决方案的地平线
精神错乱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jihong Bai其他文献
Jihong Bai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jihong Bai', 18)}}的其他基金
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10642429 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10227429 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10550346 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10642428 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10642407 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10649566 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10503621 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10766030 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10765998 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10363628 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43.6万 - 项目类别:
Research Grant














{{item.name}}会员




