Human Cochlear Structure & Function
人类耳蜗结构
基本信息
- 批准号:9885421
- 负责人:
- 金额:$ 54.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-17 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAnatomyAnimal ExperimentsAnimal ModelAnimalsArchitectureAuditoryAutomobile DrivingAutopsyBasilar MembraneBehaviorBone ConductionCadaverCaviaCharacteristicsChinchilla (genus)CochleaCochlear ductComputer ModelsCoupledDataDevelopmentDiagnosisDiscriminationEarElementsEtiologyFelis catusFrequenciesFresh TissueFutureGerbilsHairHair CellsHearingHearing problemHistologicHistologyHourHumanImageIn SituInner Hair CellsInvestigationKnowledgeLaboratory AnimalsLocationMammalsMeasurementMeasuresMechanicsMicroscopyModelingMotionMusNamesOptical Coherence TomographyOrgan of CortiOuter Hair CellsPathologyPillar CellPlant RootsPreparationProcessPropertyPsychoacousticsRadialResearchResearch PersonnelResolutionRestScanning Electron MicroscopyScientific InquirySensorineural Hearing LossSpecimenSpiral LaminaStructureSurfaceTechniquesTestingTimeTissuesTransducersVisualWorkX-Ray Computed Tomographybasecomparativeflexibilityhuman modelimprovedknowledge translationmechanical drivemorphometrypressurereconstructionsoft tissuetectorial membrane
项目摘要
PROJECT SUMMARY
Although the inner workings of the cochlea are responsible for the most fundamental aspects of hearing, including hearing
sensitivity and frequency tuning, our direct knowledge of human cochlear mechanics is limited. This lack of information
has forced researchers to rely on animal experiments to make inferences about cochlear behavior in humans, under the
assumption that the motions of the cochlear partition (CP), including the basilar membrane (BM) and the organ of Corti
(OoC), are similar between humans and laboratory animals. However, we have recently found surprising differences in
human CP anatomy and motion as compared to laboratory animals. The BM in animals is attached to a narrow fixed bony
structure, the osseous spiral lamina (OSL), and accounts for almost all of the CP motion. In contrast, the OSL in humans
is much wider, is mobile, and connects to the BM via a newly identified soft-tissue structure that we have named the CP
“bridge”. The bridge, which is non-existent in laboratory animals, is as wide as and vibrates as much as the BM.
Combined with the fact that the OSL itself is mobile, the BM therefore only accounts for a fraction of total CP motion in
humans. These newly discovered aspects of human CP anatomy and motion challenge the long-held assumption that
cochlear mechanics can be regarded as similar across mammals.
Because CP structures such as the OSL, bridge, and location where the tectorial membrane (TM) attaches to the
limbus are all mobile in humans but not in laboratory animals, we hypothesize that the motions of the OoC structures,
including the reticular lamina and TM, are different in humans, thereby altering the input driving the transduction process
at the hair bundles of the inner and outer hair cells. To test this, Optical Coherence Tomography (OCT) will allow us to
determine the anatomy and relative motion of various CP structures in situ in very fresh human cadaveric specimens. We
will also investigate and elucidate the relationships between mechanics and anatomy in the human CP using a variety of
techniques to characterize the morphometry, structural architecture, and material composition of the CP.
We will further test our hypothesis by developing finite-element models of the human cochlea that incorporate the
measured anatomy and CP mechanics. As our measurements are from postmortem ears, they cannot reveal the effects of
active processes. However, our models can approximate active behavior based on live-animal results, which are predicted
to be functionally similar to human given the similar anatomies of these structures. The resulting models will be tested
and validated against known human tuning capabilities from psychoacoustic data, opening the door to future applications
in which human cochlear pathologies, manipulations, and treatments can be simulated with unprecedented fidelity.
This research will greatly advance our understanding of how the structures of the human CP work together to define
the inputs to the transducers formed by the hair cells. It will also enable us to better understand the applicability and
limitations of animal experiments in the study of human hearing, and to better utilize animal models for scientific inquiry.
Moreover, the proposed computational models will be valuable both for scientific investigation of hearing phenomena and
for future improvements in the understanding, diagnosis and treatment of hearing disease.
项目摘要
虽然耳蜗的内部工作负责听觉的最基本方面,包括听力
灵敏度和频率调谐,我们对人类耳蜗力学的直接知识是有限的。缺少资料
迫使研究人员依靠动物实验来推断人类耳蜗的行为,
假设包括基底膜(BM)和Corti器在内的耳蜗分区(CP)的运动
(OoC)人类和实验室动物之间是相似的。然而,我们最近发现了惊人的差异,
与实验室动物相比,人类CP解剖和运动。动物的骨髓附着在一个狭窄的固定骨
骨螺旋板(OSL)是一个复杂的结构,几乎占所有的CP运动。相反,人类的OSL
更宽,是移动的,并通过新发现的软组织结构连接到BM,我们将其命名为CP
“桥”。这座桥在实验室动物身上是不存在的,它和BM一样宽,震动也一样大。
结合OSL本身是移动的的事实,BM因此仅占总CP运动的一小部分,
人类这些新发现的人类CP解剖和运动方面挑战了长期以来的假设,
哺乳动物的耳蜗力学可以被认为是相似的。
由于CP结构,如OSL,桥,以及覆膜(TM)附着于
利姆布斯在人类中都是移动的,但在实验室动物中不是,我们假设OoC结构的运动,
包括网状层和TM,在人类中是不同的,从而改变了驱动转导过程的输入
在内外毛细胞的毛束上。为了测试这一点,光学相干断层扫描(OCT)将允许我们
在非常新鲜的人类尸体标本中原位确定各种CP结构的解剖结构和相对运动。我们
还将调查和阐明力学和解剖学之间的关系,在人类CP使用各种
表征CP的形态测量、结构架构和材料组成的技术。
我们将进一步测试我们的假设,通过开发人类耳蜗的有限元模型,
测量解剖学和CP力学。由于我们的测量是从死后的耳朵,他们不能揭示的影响,
活跃的进程。然而,我们的模型可以根据预测的活体动物结果来近似主动行为。
在功能上与人类相似,因为这些结构具有相似的解剖结构。将对由此产生的模型进行测试
并根据心理声学数据对已知的人类调谐能力进行了验证,为未来的应用打开了大门
其中可以以前所未有的逼真度模拟人类耳蜗病理、操纵和治疗。
这项研究将极大地推进我们对人类CP结构如何共同工作以定义
由毛细胞形成的换能器的输入。它还将使我们能够更好地了解适用性,
在人类听觉研究中,动物实验的局限性,以及更好地利用动物模型进行科学探究。
此外,所提出的计算模型将是有价值的科学调查的听力现象,
为未来听力疾病的理解、诊断和治疗提供帮助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hideko Heidi Nakajima其他文献
Three-dimensional quantification of fibrosis and ossification after cochlear implantation via virtual emre/em-sectioning: Potential implications for residual hearing
通过虚拟切片对人工耳蜗植入后纤维化和骨化的三维定量分析:对残余听力的潜在影响
- DOI:
10.1016/j.heares.2022.108681 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:2.500
- 作者:
Alexander Geerardyn;MengYu Zhu;Peizhe Wu;Jennifer T. O'Malley;Joseph B. Nadol;M. Charles Liberman;Hideko Heidi Nakajima;Nicolas Verhaert;Alicia M. Quesnel - 通讯作者:
Alicia M. Quesnel
Hideko Heidi Nakajima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hideko Heidi Nakajima', 18)}}的其他基金
Mechanics of Human Middle & Inner Ear: Basic Science & Clinical Application
人体中部力学
- 批准号:
8650511 - 财政年份:2013
- 资助金额:
$ 54.5万 - 项目类别:
Mechanics of Human Middle & Inner Ear: Basic Science & Clinical Application
人体中部力学
- 批准号:
8735927 - 财政年份:2013
- 资助金额:
$ 54.5万 - 项目类别:
Mechanics of Human Middle & Inner Ear: Basic Science & Clinical Application
人体中部力学
- 批准号:
8901128 - 财政年份:2013
- 资助金额:
$ 54.5万 - 项目类别:
Middle-ear Mechanics in Normal and Pathological Ears
正常和病理耳朵的中耳力学
- 批准号:
8817270 - 财政年份:2001
- 资助金额:
$ 54.5万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 54.5万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 54.5万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 54.5万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 54.5万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 54.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 54.5万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 54.5万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 54.5万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 54.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 54.5万 - 项目类别:
Studentship