Computer-based Design of Dengue Virus Vaccine Antigens

基于计算机的登革热病毒疫苗抗原设计

基本信息

  • 批准号:
    9758678
  • 负责人:
  • 金额:
    $ 3.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Dengue virus (DENV) infections have been on the rise over the past three decades, with ~390 million people infected each year. Many of these infections result in severe clinical manifestations, including dengue hemorrhagic fever, dengue shock syndrome and death. Included in these statistics are infections reported in the US, such as the outbreak in Florida in 2013, and the more recent outbreak in Hawaii in 2016. DENV vaccine development has been challenging due to the prevalence of four DENV serotypes and the potential for immune enhancement of disease. The only licensed vaccine for DENV, Dengvaxia, a live-attenuated vaccine containing all four DENV serotypes, has been met with limited success as it only provides partial protection between DENV serotypes, and has been shown to increase the risk of severe dengue disease when used in dengue uninfected people. These facts display the urgent need to explore alternative vaccine strategies that are capable of providing broad protection against all DENV serotypes. We and other groups have shown that people who have been infected by DENV, develop antibodies that recognize a quaternary structural epitope which spans the viral envelope (E) protein dimer that is presented naturally on the assembled viral surface. A class of these isolated human antibodies which recognize this quaternary E protein dimer epitope (EDE) have recently been shown to broadly neutralize each of the DENV serotypes. Our proposal is grounded on the recently discovered structural biology of these EDE broadly neutralizing antibodies (Abs) which provides atomic resolution of the conserved epitope targeted by these Abs. These EDE Abs also recognize the soluble recombinant version of the DENV E protein (sRecE), a promising subunit vaccine antigen. However, under physiological conditions, the DENV sRecE antigen is predominantly monomeric in solution, and is prone to aggregation due to low monomer thermostability, limiting the protein’s presentation of EDE epitopes, and its use as a subunit vaccine. Our proposal is to leverage the existing structural information of these human EDE broadly neutralizing antibodies, and computational protein design, to engineer and produce stable EDE-epitope focused DENV sRecE protein dimers as vaccine antigens. In future studies, these stable DENV sRecE dimer antigens will be used as vaccine candidates to assess their ability to elicit broadly neutralizing EDE Abs and provide protection against DENV infection.
摘要 登革热病毒(DENV)感染在过去三十年中一直在上升,约有3.9亿人 每年感染。许多这些感染导致严重的临床表现,包括登革热 出血热、登革热休克综合征和死亡。这些统计数字包括下列国家报告的感染情况: 美国,例如2013年在佛罗里达爆发,以及2016年在夏威夷爆发。DENV 由于四种DENV血清型的流行和潜在的 疾病的免疫增强。唯一获得许可的DENV疫苗,Dengvaxia,一种减毒活疫苗 包含所有四种DENV血清型的疫苗,由于其仅提供部分保护, 在DENV血清型之间,并且已经显示当用于 未感染登革热的人。这些事实表明迫切需要探索替代疫苗策略 其能够提供针对所有DENV血清型的广泛保护。我们和其他团体 显示感染过登革病毒的人,产生了识别四级结构的抗体, 表位,其跨越在组装的病毒上天然存在的病毒包膜(E)蛋白二聚体 面一类识别这种四级E蛋白二聚体表位的这些分离的人抗体 (EDE)最近已显示广泛中和每种DENV血清型。我们的提议是有根据的 最近发现的这些EDE广泛中和抗体(Abs)的结构生物学, 这些Ab靶向的保守表位的原子分辨率。这些EDE抗体还识别可溶性 DENV E蛋白(sRecE)的重组版本,一种有前途的亚单位疫苗抗原。但根据 在生理条件下,DENV sRecE抗原在溶液中主要是单体的,并且易于在细胞内发生。 由于单体热稳定性低,限制了蛋白质对EDE表位的呈递, 用作亚单位疫苗。我们的建议是利用这些人类的现有结构信息, EDE广泛中和抗体和计算蛋白质设计,以工程和生产 稳定的EDE-表位聚焦的DENV sRecE蛋白二聚体作为疫苗抗原。在未来的研究中,这些 稳定的DENV sRecE二聚体抗原将被用作疫苗候选物,以评估它们广泛地诱导免疫应答的能力。 中和EDE Ab并提供针对DENV感染的保护。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephan Kudlacek其他文献

Stephan Kudlacek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
  • 批准号:
    2349179
  • 财政年份:
    2024
  • 资助金额:
    $ 3.43万
  • 项目类别:
    Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 3.43万
  • 项目类别:
    Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
  • 批准号:
    23K10982
  • 财政年份:
    2023
  • 资助金额:
    $ 3.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    DGECR-2022-00401
  • 财政年份:
    2022
  • 资助金额:
    $ 3.43万
  • 项目类别:
    Discovery Launch Supplement
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
  • 批准号:
    RGPIN-2016-03885
  • 财政年份:
    2022
  • 资助金额:
    $ 3.43万
  • 项目类别:
    Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    RGPIN-2022-04570
  • 财政年份:
    2022
  • 资助金额:
    $ 3.43万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithm Design
算法设计
  • 批准号:
    CRC-2015-00122
  • 财政年份:
    2022
  • 资助金额:
    $ 3.43万
  • 项目类别:
    Canada Research Chairs
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
  • 批准号:
    22K17855
  • 财政年份:
    2022
  • 资助金额:
    $ 3.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
  • 批准号:
    2210849
  • 财政年份:
    2022
  • 资助金额:
    $ 3.43万
  • 项目类别:
    Continuing Grant
Spectral Techniques in Algorithm Design and Analysis
算法设计和分析中的谱技术
  • 批准号:
    RGPIN-2020-04385
  • 财政年份:
    2022
  • 资助金额:
    $ 3.43万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了