Measuring the role of mental model complexity on individual behavioral and neural differences in adaptive decision making

衡量心理模型复杂性对适应性决策中个体行为和神经差异的作用

基本信息

  • 批准号:
    9758624
  • 负责人:
  • 金额:
    $ 6.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY To make good decisions in uncertain environments, humans build and update ‘mental models’ of relevant environmental statistics that can be used to make predictions and guide decision-making. When the environment changes, these models need to be adaptable to retain their predictiveness. This kind of adaptability typically involves key information-processing trade-offs that are well understood theoretically but have yet to be applied substantially to our understanding of human brain function and behavior. Here I examine systematically how these trade-offs, measured both from behavior and brain-imaging data, relate to the considerable variability in decision-making abilities that are typically evident across subjects and task conditions. My focus on behavioral, computational, and neural mechanisms of individual variability in decision-making abilities is particularly relevant to long-term research in mental health. Decision-making is severely disrupted in a number of mental illnesses including anxiety, schizophrenia, and addictive behaviors, but the exact mechanisms underlying these disruptions have yet to be fully elucidated. My central hypothesis is that individual and task-dependent differences in adaptive decision-making reflect systematic variability in the complexity of the mental models upon which the decisions are based. In the fields of statistics and machine learning, predictive models compress past observations into representations that can generalize to the future. A model’s complexity determines the flexibility with which this compression can account for new information. Complex models are more adaptive (low bias) but can overfit spurious observations, leading to more behavioral variability. In contrast, simpler models tend to have higher bias but lower variability. This tradeoff between bias and variance is well described in statistics and machine learning, but its influence on human mental models and decision-making behavior is not well known. The two primary aims of this project are: 1) to develop a principled measure of mental complexity that can be applied to human behavioral data; and 2) to identify the influence of mental model complexity on neuromodulatory brain networks involved in the mental exploration required for adaptive decision-making, and how activity in these networks differs across individuals. By linking a strong theoretical framework with methods from information theory, psychology, neuroscience, and computational modeling, the current proposal will provide a novel lens with which to examine behavioral and neurobiological sources of individual variability in human decision-making. Moreover, the results of this research will provide crucial insights for interventions aimed at understanding and improving decision-making processes affected by mental illnesses.
项目总结

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandre L. Filipowicz其他文献

Alexandre L. Filipowicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Neuronal regulation of glutamate homeostasis in addictive behavior
成瘾行为中谷氨酸稳态的神经元调节
  • 批准号:
    364631096
  • 财政年份:
    2017
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Research Fellowships
The Effects of Sadness Versus Gratitude on Economic Decision Making and Addictive Behavior
悲伤与感恩对经济决策和成瘾行为的影响
  • 批准号:
    1559511
  • 财政年份:
    2016
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Continuing Grant
Beta-arrestin Regulation of Ghrelin Signaling in Modulating Addictive Behavior
β-抑制素对 Ghrelin 信号传导在调节成瘾行为中的调节
  • 批准号:
    8811411
  • 财政年份:
    2014
  • 资助金额:
    $ 6.12万
  • 项目类别:
Beta-arrestin Regulation of Ghrelin Signaling in Modulating Addictive Behavior
β-抑制素对 Ghrelin 信号传导在调节成瘾行为中的调节
  • 批准号:
    8637290
  • 财政年份:
    2014
  • 资助金额:
    $ 6.12万
  • 项目类别:
Orexin and Leptin Regulation of Feeding and Addictive Behavior in the VTA
食欲素和瘦素对 VTA 中进食和成瘾行为的调节
  • 批准号:
    8236865
  • 财政年份:
    2011
  • 资助金额:
    $ 6.12万
  • 项目类别:
Orexin and Leptin Regulation of Feeding and Addictive Behavior in the VTA
食欲素和瘦素对 VTA 中进食和成瘾行为的调节
  • 批准号:
    8434870
  • 财政年份:
    2011
  • 资助金额:
    $ 6.12万
  • 项目类别:
Orexin and Leptin Regulation of Feeding and Addictive Behavior in the VTA
食欲素和瘦素对 VTA 中进食和成瘾行为的调节
  • 批准号:
    8215386
  • 财政年份:
    2011
  • 资助金额:
    $ 6.12万
  • 项目类别:
Orexin and Leptin Regulation of Feeding and Addictive Behavior in the VTA
食欲素和瘦素对 VTA 中进食和成瘾行为的调节
  • 批准号:
    7739920
  • 财政年份:
    2009
  • 资助金额:
    $ 6.12万
  • 项目类别:
CBP Acetyltransferase Function in Addictive Behavior
CBP 乙酰转移酶在成瘾行为中的作用
  • 批准号:
    7173929
  • 财政年份:
    2006
  • 资助金额:
    $ 6.12万
  • 项目类别:
CBP Acetyltransferase Function in Addictive Behavior
CBP 乙酰转移酶在成瘾行为中的作用
  • 批准号:
    7290942
  • 财政年份:
    2006
  • 资助金额:
    $ 6.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了