The biosynthesis of N-N bond-containing natural products
含N-N键天然产物的生物合成
基本信息
- 批准号:9886650
- 负责人:
- 金额:$ 37.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismArchitectureAttentionBiochemicalBiochemistryBiologicalBiologyBreathingChemical StructureChemicalsChemistryChemotherapy-Oncologic ProcedureClinicalClinical TrialsComplexDrug CompoundingDrug usageEnzymesFutureGene ClusterGenesGenomeGenomicsGoalsHealthHumanKnowledgeLifeLogicMalignant NeoplasmsMalignant neoplasm of pancreasMediatingMolecularNatural ProductsNatureNitrogenOutcomePathway interactionsPharmaceutical PreparationsPharmacologic SubstanceProteinsReagentResearchSavingsSourceStreptozocinStructureSynthesis ChemistryWorkbasebioactive natural productscatalystchemical reactionclinical candidatediazo compoundenzyme pathwayfunctional groupguided inquiryimprovedinterestmicrobialmicroorganismnovelpharmacophoreprogramsscaffoldsmall moleculesynthetic biology
项目摘要
PROJECT SUMMARY
Microbial natural products possess complex chemical structures as well as potent biological activity and are an
important source of drugs. While these molecules have captivated synthetic and medicinal chemists for decades,
more recently the underlying biosynthetic pathways that construct natural product scaffolds have been
recognized as important reservoirs of novel enzymes. Uncovering new enzymatic chemistry and biosynthetic
strategies expands our basic understanding of Nature’s synthetic capabilities. It is also a critical first step toward
applications of this fundamental knowledge and can serve as an inspiration for synthetic chemists. The long-
term goal of the proposed research is to identify microbial enzymes that catalyze previously unappreciated
chemical transformations. We envision discovering such enzymes by studying the biosynthesis of natural
products containing important molecular architecture and functional groups of unknown biosynthetic origin. An
important class of such structural motifs are functional groups containing a nitrogen-nitrogen (N–N) bond, a
chemical linkage found in 9% of the 200 best-selling drugs. Reactive N–N bond-containing functional groups,
including diazo and N-nitroso groups, are a critical part of biologically active small molecules including
streptozotocin (Zanosar®), a clinically used treatment for metastatic pancreatic cancer. They are also uniquely
enabling chemical reagents, with diazo compounds mediating many important and powerful chemical
transformations in synthetic chemistry, biocatalysis, and biorthogonal chemistry. Though reactive N–N bonds
are present in microbial natural products, their biosynthetic origins are poorly understood. Thus, the overall
objective of this application is to discover and characterize enzymes that construct diazo- and N-nitroso-
containing metabolites. Preliminary results from our lab and others have uncovered biosynthetic gene clusters
responsible for constructing multiple diazo- and N-nitroso-containing natural products, including streptozotocin
and other molecules that have been in clinical trials. These findings set the stage for our three complementary
specific aims: 1) identify and characterize the biosynthetic enzymes responsible for constructing the diazo groups
of the natural products cremeomycin and kinamycin; 2) identify and characterize the biosynthetic enzymes
responsible for constructing the N-nitroso groups of the natural products streptozotocin and alanosine; 3) access
additional diazo and N-nitroso biosynthetic enzymes and natural products by characterizing cryptic gene clusters.
By leveraging the tremendous structural diversity of microbial natural products in the genomic era, we will rapidly
discover and characterize biosynthetic transformations that fill critical gaps in our current knowledge of enzymatic
chemistry capabilities. Finally, the workflow we have formulated for investigating the biosynthesis of reactive N–
N bond-containing functional groups will also be readily generalizable to additional structural motifs found in
microbial natural products.
项目概要
微生物天然产物具有复杂的化学结构和强大的生物活性,是一种
重要的药物来源。虽然这些分子几十年来一直吸引着合成化学家和药物化学家,
最近,构建天然产物支架的潜在生物合成途径已被研究
被认为是新型酶的重要储存库。发现新的酶化学和生物合成
策略扩展了我们对自然合成能力的基本理解。这也是迈向关键的第一步
这些基础知识的应用可以为合成化学家提供灵感。长-
拟议研究的长期目标是识别催化以前未被认识到的微生物酶
化学转变。我们设想通过研究天然物质的生物合成来发现此类酶
含有重要分子结构和未知生物合成来源的官能团的产品。一个
这类结构基序的重要一类是含有氮-氮(N-N)键的官能团,
200 种最畅销药物中的 9% 都发现了化学键。含有反应性 N-N 键的官能团,
包括重氮基和 N-亚硝基,是生物活性小分子的关键部分,包括
链脲佐菌素 (Zanosar®),一种临床用于治疗转移性胰腺癌的药物。他们也各具特色
启用化学试剂,重氮化合物介导许多重要且强大的化学物质
合成化学、生物催化和双正交化学的转变。虽然反应性 N-N 键
存在于微生物天然产物中,但对其生物合成来源知之甚少。因此,总体
本应用的目的是发现并表征构建重氮基和 N-亚硝基-的酶
含有代谢物。我们实验室和其他实验室的初步结果发现了生物合成基因簇
负责构建多种含重氮基和N-亚硝基的天然产物,包括链脲佐菌素
以及其他已经进入临床试验的分子。这些发现为我们的三个互补奠定了基础
具体目标:1)鉴定和表征负责构建重氮基团的生物合成酶
天然产物克雷莫霉素和运动霉素; 2) 生物合成酶的鉴定和表征
负责构建天然产物链脲佐菌素和丙氨酸的N-亚硝基; 3)访问
通过表征隐性基因簇,获得额外的重氮和 N-亚硝基生物合成酶和天然产物。
通过利用基因组时代微生物天然产物的巨大结构多样性,我们将迅速
发现并表征生物合成转化,填补我们当前酶促知识的关键空白
化学能力。最后,我们制定了用于研究活性 N-的生物合成的工作流程
含 N 键的官能团也很容易推广到其他结构基序
微生物天然产物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Patricia Balskus其他文献
Emily Patricia Balskus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Patricia Balskus', 18)}}的其他基金
The biosynthesis of N-N bond-containing natural products
含N-N键天然产物的生物合成
- 批准号:
10580666 - 财政年份:2020
- 资助金额:
$ 37.24万 - 项目类别:
The biosynthesis of N-N bond-containing natural products
含N-N键天然产物的生物合成
- 批准号:
10299605 - 财政年份:2020
- 资助金额:
$ 37.24万 - 项目类别:
Understanding the Mechanism of a Gut Microbial Genotoxin Involved in Colorectal Carcinogenesis
了解肠道微生物基因毒素参与结直肠癌发生的机制
- 批准号:
10316686 - 财政年份:2016
- 资助金额:
$ 37.24万 - 项目类别:
Understanding the Mechanism of a Gut Microbial Genotoxin Involved in Colorectal Carcinogenesis
了解肠道微生物基因毒素参与结直肠癌发生的机制
- 批准号:
10668976 - 财政年份:2016
- 资助金额:
$ 37.24万 - 项目类别:
Understanding the Mechanism of a Gut Microbial Genotoxin Involved in Colorectal Carcinogenesis
了解肠道微生物基因毒素参与结直肠癌发生的机制
- 批准号:
10458731 - 财政年份:2016
- 资助金额:
$ 37.24万 - 项目类别:
Understanding the Mechanism of a Gut Microbial Genotoxin Involved in Colorectal Carcinogenesis
了解肠道微生物基因毒素参与结直肠癌发生的机制
- 批准号:
9174570 - 财政年份:2016
- 资助金额:
$ 37.24万 - 项目类别:
Biocompatible Chemistry for In Vivo Metabolite Modification
用于体内代谢物修饰的生物相容性化学
- 批准号:
8354079 - 财政年份:2012
- 资助金额:
$ 37.24万 - 项目类别:
Understanding the Evolution of Halogenation in Biological Systems
了解生物系统中卤化的演变
- 批准号:
7483946 - 财政年份:2008
- 资助金额:
$ 37.24万 - 项目类别:
Understanding the Evolution of Halogenation in Biological Systems
了解生物系统中卤化的演变
- 批准号:
7792186 - 财政年份:2008
- 资助金额:
$ 37.24万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 37.24万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 37.24万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 37.24万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 37.24万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 37.24万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 37.24万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 37.24万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 37.24万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 37.24万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 37.24万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




