Adaptive Optics Imaging of Human Retinal Vascular Structure and Function
人视网膜血管结构和功能的自适应光学成像
基本信息
- 批准号:9887532
- 负责人:
- 金额:$ 48.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAgeAnatomyAnimal ModelAreaBiologicalBiological MarkersBlindnessBloodBlood VesselsBlood capillariesBlood flowCaliberCellsChoroidClinicalClinical PathologyClinical TreatmentConeConsensusDataDevelopmentDiabetes MellitusDiabetic RetinopathyDiseaseDropoutEndothelial CellsEndotheliumErythrocytesEvaluationFailureFutureGoalsHealthHumanImageImaging TechniquesImpairmentIndividualLasersLinkLocationMapsMeasurementMeasuresMonitorNatureOphthalmoscopesOpticsPatient imagingPerfusionPericytesPhotic StimulationPhotoreceptorsPlayRegulationReproducibilityResearchResolutionRetinaRetinal ConeRetinal DiseasesRiskRoleSampling BiasesScanningSpeedStructureTechniquesTestingThickTimeVascular DiseasesVascular remodelingVisitVisualWorkadaptive opticsadaptive optics scanning laser ophthalmoscopyarteriolebasecellular imagingclinically significantdiabeticfollow-uphigh resolution imaginghuman imagingimprovedindexingindividual patientmacular edemaneurovascular couplingnovel strategiesoptical imagingrelating to nervous systemresponseretina blood vessel structureretinal damageretinal imagingretinal ischemiaretinal neuronroutine imagingtemporal measurementvascular abnormalityvisual stimulus
项目摘要
Summary
Diabetes and other retinal vascular diseases are a major cause of vision loss. This work builds on our
measures of vascular remodeling in diabetes using adaptive optics (AO) retinal imaging. AO retinal imaging
provides highly accurate and reproducible measures of both structural changes to the vascular walls of
arterioles, and functional measures of blood flow and neurovascular coupling between visual stimulation and
blood flow. By taking advantage of the precision of AO imaging we can make highly reproducible and accurate
measurements of changes to retinal microvessels.
In Aim 1 we will test the hypothesis that using a unique index of vascular wall damage which is insensitive to
sampling biases can act as an index of diabetic damage. We will also generate a new measure of arteriole
damage based on variability in the thickness of the vessel walls, presumably arising from endothelial and
pericyte cell loss. We will then test whether these easily measured biomarkers are sensitive to local retinal
ischemia, and can be used to measure progression of DR. Improving measurements in early DR is important
as the clinical pathology is ultimately a consequence of these early changes. We will also test whether
impaired neurovascular coupling is associated with these vascular changes. In Aim 2 we will measure early
changes to the cone photoreceptors in diabetes, including both local areas of less reflective cones and regions
of disordered cones and relate these changes to vascular changes. By also measuring visual sensitivity in
areas with cone changes and those without we will test the hypothesis that imaging measurements can be
used to understand the sensitivity changes occurring in DR. In Aim 3 we will for the first time, measure
quantitative 3D flow maps of entire regions of the retinal vascular network. Flow maps include information as
to where blood is flowing, velocity, size and in which direction allowing network quantification. Because the
distribution of flow through a vascular network is sensitive to physical and biological constraints, flow maps will
change markedly as capillary occlusion occur.
By combining our state-of-the-art for retinal imaging of the vasculature with clinically available data we will
continue to better understand the anatomical and functional basis for clinically observable damage. This work
will advance our long term scientific goals of understanding the role that early vascular changes play in vision
loss, our clinical goal of developing new approaches to identify those individuals most at risk for damage, as
well as allow improved monitoring of future treatments on an individual basis.
概括
糖尿病和其他视网膜血管疾病是视力丧失的主要原因。这项工作建立在我们的
使用自适应光学(AO)视网膜成像测量糖尿病血管重塑。 AO视网膜成像
提供血管壁结构变化的高度准确和可重复的测量
小动脉,以及视觉刺激和视觉刺激之间的血流和神经血管耦合的功能测量
血流(量。通过利用 AO 成像的精度,我们可以实现高度可重复且准确的
测量视网膜微血管的变化。
在目标 1 中,我们将测试以下假设:使用对血管壁损伤不敏感的独特指数
抽样偏差可以作为糖尿病损害的指标。我们还将生成新的小动脉测量值
基于血管壁厚度变化的损伤,可能是由内皮细胞和
周细胞损失。然后我们将测试这些易于测量的生物标志物是否对局部视网膜敏感
缺血,可用于测量 DR 的进展。改进早期 DR 的测量非常重要
因为临床病理最终是这些早期变化的结果。我们还将测试是否
神经血管耦合受损与这些血管变化有关。在目标 2 中,我们将尽早测量
糖尿病患者视锥细胞的变化,包括反射性较低的视锥细胞的局部区域和区域
紊乱的视锥细胞并将这些变化与血管变化联系起来。通过测量视觉敏感度
有锥体变化的区域和没有锥体变化的区域我们将检验成像测量可以是的假设
用于了解 DR 中发生的敏感性变化。在目标 3 中,我们将首次测量
视网膜血管网络整个区域的定量 3D 血流图。流程图包括以下信息
血液流动的位置、速度、大小以及方向,允许网络量化。因为
通过血管网络的流量分布对物理和生物约束很敏感,流量图将
当毛细血管闭塞发生时,其变化显着。
通过将我们最先进的脉管系统视网膜成像与临床可用数据相结合,我们将
继续更好地了解临床可观察到的损伤的解剖学和功能基础。这部作品
将推进我们了解早期血管变化在视力中所起的作用的长期科学目标
损失,我们的临床目标是开发新方法来识别那些最有可能遭受损害的人,例如
并允许改进对个人未来治疗的监测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen A Burns其他文献
Stephen A Burns的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen A Burns', 18)}}的其他基金
Adaptive Optics Imaging of Human Retinal Vascular Structure and Function
人视网膜血管结构和功能的自适应光学成像
- 批准号:
10534739 - 财政年份:2014
- 资助金额:
$ 48.87万 - 项目类别:
Adaptive Optics Imaging of Human Retinal Vascular Structure and Function
人视网膜血管结构和功能的自适应光学成像
- 批准号:
8975208 - 财政年份:2014
- 资助金额:
$ 48.87万 - 项目类别:
Adaptive Optics Imaging of Human Retinal Vascular Structure and Function
人视网膜血管结构和功能的自适应光学成像
- 批准号:
10314059 - 财政年份:2014
- 资助金额:
$ 48.87万 - 项目类别:
Adaptive Optics Imaging of Human Retinal Vascular Structure and Function
人视网膜血管结构和功能的自适应光学成像
- 批准号:
10077551 - 财政年份:2014
- 资助金额:
$ 48.87万 - 项目类别:
Core Support for Vision Research at Indiana University
印第安纳大学视觉研究的核心支持
- 批准号:
7876690 - 财政年份:2009
- 资助金额:
$ 48.87万 - 项目类别:
Core Support for Vision Research at Indiana University
印第安纳大学视觉研究的核心支持
- 批准号:
8097993 - 财政年份:2009
- 资助金额:
$ 48.87万 - 项目类别:
Core Support for Vision Research at Indiana University
印第安纳大学视觉研究的核心支持
- 批准号:
8485613 - 财政年份:2009
- 资助金额:
$ 48.87万 - 项目类别:
Core Support for Vision Research at Indiana University
印第安纳大学视觉研究的核心支持
- 批准号:
8298182 - 财政年份:2009
- 资助金额:
$ 48.87万 - 项目类别:
Core Support for Vision Research at Indiana University
印第安纳大学视觉研究的核心支持
- 批准号:
7693953 - 财政年份:2009
- 资助金额:
$ 48.87万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Research Grant














{{item.name}}会员




