Integrative prediction of seasonal influenza evolution by genotype, phenotype, and geography
通过基因型、表型和地理综合预测季节性流感演变
基本信息
- 批准号:9760537
- 负责人:
- 金额:$ 4.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:Amino AcidsBiologicalBiological AssayBlood CirculationCenters for Disease Control and Prevention (U.S.)Cessation of lifeCharacteristicsCollaborationsComplementComputer SimulationComputing MethodologiesDataDatabasesDevelopmentDissectionEpitopesEvolutionFrequenciesFutureGenomeGenotypeGeographic DistributionGeographyHealthHemagglutinationHemagglutininHumanImmunityInfluenzaInfluenza HemagglutininMathematicsMeasurementMeasuresMembrane ProteinsModelingModernizationMorbidity - disease rateMutagenesisMutationNeuraminidasePatternPersonsPhenotypePhylogenetic AnalysisPopulationPopulation GeneticsProcessProteinsPublic HealthPublicationsRecommendationReportingResearch PersonnelResearch SupportSeasonsSourceStructureTrainingVaccinationVaccine DesignVaccinesViralVirusWorld Health Organizationadaptive immunitycross reactivityepidemiology studyexperimental studyfitnessgenome sequencinggeographic populationimprovedinfluenza virus vaccineinfluenzavirusmeetingsmigrationmortalitymutation screeningnovelpredictive modelingresponseseasonal influenzasuccessvaccine developmentvaccine efficacyviral fitnessvirologywhole genome
项目摘要
Project Summary/Abstract
The rapid evolution of seasonal influenza requires the development of a new influenza vaccine by the World
Health Organization (WHO) every one to two years. This evolution occurs through a process of antigenic drift
where amino acid mutations in the hemagglutinin (HA) surface protein allow currently circulating viruses to
evade adaptive immunity against previous vaccine viruses. Therefore, globally successful seasonal influenza
viruses are often antigenically distinct from previous lineages. High-quality experimental assays for antigenic
drift are laborious and low-throughput, leading researchers to develop computational models that can predict the
success of influenza viruses from HA sequence data alone. Since the publication of these original sequence-
only models in 2014, there have been significant advances in influenza virology and computational methods
that could benefit influenza predictive models. Specifically, there are now computational methods to measure
antigenic drift by accurately inferring missing measurements in HI assays, high-throughput mutagenesis assays
to measure functional constraints on mutations in HA, research supporting the importance of proteins other than
HA for influenza's fitness, and detailed analysis of influenza's variable geographic circulation. I propose to create
a new predictive model of influenza evolution that integrates these modern, biologically-informed fitness metrics
into a single framework. These new metrics will build on dense, high-quality HI assays from collaborators at
the Centers for Disease Control and Prevention (CDC), deep mutational scanning assays of seasonal influenza
from collaborators in Dr. Jesse Bloom's lab, a curated database of whole genome sequences for influenza, and
empirical estimates of influenza's global migration rates. This new predictive model will improve the accuracy
of predictions about which viruses are most likely to succeed in future influenza seasons. These improved
predictions will inform recommendations by Dr. Bedford to the WHO at annual vaccine design meetings and,
thereby, effect improvements in vaccine efficacy and reduce influenza-related morbidity and mortality in human
populations.
项目概要/摘要
季节性流感的快速演变需要世界开发新的流感疫苗
卫生组织 (WHO) 每一到两年一次。这种进化是通过抗原漂移的过程发生的
血凝素 (HA) 表面蛋白的氨基酸突变使得当前流行的病毒能够
逃避针对先前疫苗病毒的适应性免疫。因此,全球范围内成功的季节性流感
病毒通常在抗原上与以前的谱系不同。高质量的抗原实验测定
漂移是费力且低通量的,导致研究人员开发可以预测漂移的计算模型
仅从 HA 序列数据就可以看出流感病毒的成功。自从这些原始序列出版以来——
仅在 2014 年的模型中,流感病毒学和计算方法就取得了重大进展
这可能有利于流感预测模型。具体来说,现在有计算方法来测量
通过准确推断 HI 测定、高通量诱变测定中缺失的测量值来进行抗原漂移
为了测量 HA 突变的功能限制,研究支持除
流感适应性的HA,以及流感可变地理循环的详细分析。我建议创建
一种新的流感进化预测模型,整合了这些现代的、生物信息丰富的健康指标
到一个单一的框架中。这些新指标将建立在来自合作者的密集、高质量的 HI 检测的基础上。
疾病控制和预防中心 (CDC),季节性流感的深度突变扫描分析
来自 Jesse Bloom 博士实验室的合作者,这是一个精心策划的流感全基因组序列数据库,以及
流感全球迁移率的经验估计。这种新的预测模型将提高准确性
预测哪些病毒最有可能在未来的流感季节取得成功。这些改进了
预测将为贝德福德博士在年度疫苗设计会议上向世界卫生组织提出的建议提供依据,
从而提高疫苗功效并降低人类与流感相关的发病率和死亡率
人口。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN HUDDLESTON其他文献
JOHN HUDDLESTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Standard Grant