A computational approach to early sepsis detection
早期脓毒症检测的计算方法
基本信息
- 批准号:9557664
- 负责人:
- 金额:$ 31.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAlgorithmsAreaCessation of lifeClassificationClinicalClinical Decision Support SystemsCollectionCustomDataData CollectionData SetDetectionDiscriminationDropsEarly DiagnosisEarly InterventionFutureGoldHealthcareHealthcare SystemsHourImageImmune responseInstitutionKnowledgeLearningLengthMachine LearningMedicalMethodsMulticenter StudiesNaturePatient-Focused OutcomesPatientsPerformancePsychological TransferReceiver Operating CharacteristicsResearchResidual stateRiskSCAP2 geneSensitivity and SpecificitySepsisSeptic ShockSeveritiesSideSiteSmall Business Innovation Research GrantSourceSurvival RateSystemTechniquesTestingTrainingValidationWorkbaseclinical data warehouseclinical decision supportclinical research sitecostdata acquisitionexperimental studyimprovedinsightlearning strategymortalityperformance siteportabilityprospectivescreeningsepticseptic patientssuccesssupport tools
项目摘要
Abstract
Significance: In this SBIR project, we propose to improve the performance of InSight, a machine-learning-
based sepsis screening system, in situations of limited training data from the target clinical site. The proposed
work will make possible prospective clinical deployments to sites which are smaller or lack clinical data
repositories, by significantly reducing the amount of training data necessary down to a few weeks of clinical
observation. Classically, a machine-learning-based system like InSight requires complete retraining for each
new clinical setting, in turn requiring a new and large collection of data from each target deployment site. We
will circumvent this requirement via transfer learning techniques, which transfer knowledge acquired previously
in a source clinical setting to a new, target setting. Research Questions: Which transfer learning methods and
paired classification algorithms are most suitable for use with InSight, requiring minimal target-site training data
while maintaining strong performance? Are these methods and algorithms robust across the several common
sepsis-spectrum definitions? Prior Work: We have developed InSight using the MIMIC-III retrospective data
set, on which it attains an area under the receiver operating characteristic curve (AUROC) of 0.88 for sepsis
detection, and 0.74 for 4-hour early sepsis prediction. We have also conducted pilot transfer learning
≥
experiments in a different clinical task, mortality forecasting, in which transfer learning yields a 10-fold
reduction in the amount of target-site training data required to achieve AUROC 0.80. Specific Aims: Aim 1 -
to implement and assess side-by-side four diverse transfer learning methods for a retrospective clinical sepsis
prediction task, where the source data set is MIMIC-III and the simulated clinical target is a data set drawn
from UCSF. Aim 2 - to determine which among the best methods from Aim 1 also provide robust performance
when applied to two additional sepsis-spectrum gold standards. Methods: We will prepare implementations of
transfer learning methods which use instance transfer, residual learning and/or feature augmentation, kernel
length scale transfer, and feature transfer. We will test these methods with applicable classifiers on subsets of
the UCSF set, using cross-validation and quantifying discrimination performance in terms of AUROC. The best
method/classifier pairs will require no more than 30 examples of septic patients from the target set and attain
AUROC superiorities of 0.05 in 0- and 4-hour pre-onset sepsis prediction/detection, relative to the best tested
alternative screening systems (Aim 1). The top three pairs will then be tested for robustness to gold standard
choice, using septic shock (0- and 4-hour) and SIRS-based sepsis (0-hour) gold standards; in these tests, at
least one pair must again attain 0.05 margin of superiority in AUROC versus the alternative screening systems
(Aim 2). Future Directions: The results of these experiments will enable InSight to be robustly deployed to
diverse clinical sites, yielding high performance without the need for extensive target-site data acquisition.
摘要
意义:在这个SBIR项目中,我们建议提高机器学习InSight的性能,
基于败血症筛查系统,在目标临床研究中心的培训数据有限的情况下。拟议
这项工作将使规模较小或缺乏临床数据的研究中心的前瞻性临床部署成为可能
存储库,通过将必要的训练数据量显著减少到几周的临床
观察.传统上,像InSight这样基于机器学习的系统需要对每个人进行完全的再培训。
新的临床环境,进而需要从每个目标部署部位收集新的大量数据。我们
我将通过迁移学习技术来规避这一要求,迁移学习技术将以前获得的知识
从一个原始的临床环境转变为一个新的目标环境。研究问题:哪些转移学习方法和
成对分类算法最适合与InSight配合使用,需要最少的目标部位训练数据
同时保持强劲的业绩?这些方法和算法在几种常见的
败血症谱的定义?之前的工作:我们使用MIMIC-III回顾性数据开发了InSight
组,在此基础上,脓毒症的受试者工作特征曲线下面积(AUROC)为0.88
检测和0.74用于4小时早期脓毒症预测。我们还进行了试点迁移学习
≥
在一个不同的临床任务,死亡率预测,其中迁移学习产生10倍的实验,
减少达到AUROC 0.80所需的目标部位训练数据量。具体目标:目标1 -
实施和评估并行四种不同的迁移学习方法,用于回顾性临床脓毒症
预测任务,其中源数据集是MIMIC-III,模拟临床目标是绘制的数据集
来自UCSF目标2 -确定目标1中的哪些最佳方法也能提供稳健的性能
当应用于两个额外的败血症光谱金标准时。方法:我们将准备
迁移学习方法使用实例迁移、残差学习和/或特征增强、内核
长度比例转换和特征转换。我们将测试这些方法与适用的分类器的子集
UCSF集,使用交叉验证和量化区分性能的AUROC。最好的
方法/分类器对将需要来自目标集合的不超过30个脓毒症患者的例子,
相对于最佳测试,AUROC在0小时和4小时发作前脓毒症预测/检测中的优势为0.05
替代筛选系统(目标1)。然后将测试前三对对金标准的稳健性
选择,使用脓毒性休克(0小时和4小时)和基于SIRS的脓毒症(0小时)金标准;在这些测试中,
AUROC与其他筛选系统相比,至少有一对必须再次达到0.05的优效性界限
(Aim 2)。未来方向:这些实验的结果将使InSight能够稳健地部署到
不同的临床站点,无需广泛的目标站点数据采集即可获得高性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ritankar Das其他文献
Ritankar Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ritankar Das', 18)}}的其他基金
Early Identification of Acute Kidney Injury Using Deep Recurrent Neural Nets, Presented with Probable Etiology
使用深层循环神经网络早期识别急性肾损伤,并提出可能的病因
- 批准号:
9621546 - 财政年份:2018
- 资助金额:
$ 31.08万 - 项目类别:
Autonomous system supporting patient-specific transfer and discharge decisions
支持患者特定转移和出院决策的自主系统
- 批准号:
9256278 - 财政年份:2017
- 资助金额:
$ 31.08万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 31.08万 - 项目类别:
Directed Grant