Computational and circuit mechanisms underlying motor control
电机控制的计算和电路机制
基本信息
- 批准号:9568037
- 负责人:
- 金额:$ 297.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnatomyAreaBRAIN initiativeBackBehaviorBehavioralBrainCorpus striatum structureDataData ScienceExtensorFlexorImageInterneuronsKnowledgeLogicMapsMeasuresModelingMotorMotor CortexMovementMuscleNervous system structureNeuronsNeurosciencesOutputPatternPopulationPrimatesResource SharingRodentRoleSpinalSpinal CordStructureSystemTechnologyTestingThalamic structureTimeUpdatearmbasebrain behaviorcell typecomputerized toolsdata sharingexperimental studyinstrumentationmembermotor controlmultidisciplinaryneuroregulationnew technologynovel strategiesoptogeneticspredictive modelingprogramsrelating to nervous system
项目摘要
Understanding the mechanisms that the nervous system uses to control movement is critical for
understanding brain and behavior, and one of the fundamental questions in neuroscience. The
control of movement emerges from the activity of different motor control centers, that converge onto
output systems, mostly located in the spinal cord. While the spinal circuits that underlie different
aspects of motor control have been relatively well characterized, the way by which these circuits are
coordinated by supraspinal motor control centers remains elusive. In this project, we aim to
understand the functional and computational logic of connectivity between a motor control centers,
the motor cortex, and the spinal cord and muscle. We will anatomically and functionally characterize
the role of projection-specific populations of corticospinal neurons during particular modes of motor
control. Because even the simplest motor program requires the activation of many neuronal
populations across multiple brain areas, we will also investigate the contribution of other cortical and
subcortical areas to the output of the brain to the spinal cord, and to muscle activity. This
understanding requires It also requires extracting the information that is carried between brain areas
and neuronal cell types, and understanding the computations that are operated in the circuits in order
to achieve specific patterns of muscle activation. We will
extract computational principles governing
the relation between brain activity and muscle activity that are conserved between rodents and
, and will construct predictive models of . In order
to achieve a mechanistic understanding of the brain circuits underlying motor control, we will
dissect the contributions of activity in specific neural populations using closed-loop optogenetic
manipulations. The level of understanding that we are seeking requires a dynamic back and forth
between anatomical and functional mapping experiments, computational and conceptual models,
and causal testing of predictions. We put together a a multidisciplinary team of PIs working in a tight
network, sharing the latest technologies to measure and manipulate the brain through an Advanced
Imaging and Instrumentation core, creating and refining circuit models based on data that generate
testable predictions, and establishing real-time knowledge exchange between team members
through a Data Science Core. Our U19BCP Motor Control team proposes a comprehensive and
ambitious project to establish the computational and circuit mechanisms underlying classical modes
of motor control based on cell-type specific connectivity between brain and spinal cord, novel
technology to measure and manipulate functionally and genetically-defined neural populations, and
state-of-the-art computational tools.
primates
multi-area dynamics during motor control
了解神经系统用来控制运动的机制对于
了解大脑和行为,以及神经科学的基本问题之一。的
运动的控制来自于不同的运动控制中心的活动,这些活动集中在
输出系统,主要位于脊髓。而脊髓神经回路的基础不同
电动机控制的各个方面已经被相对较好地表征,这些电路被
脊髓上运动控制中心的协调仍然是难以捉摸的。在这个项目中,我们的目标是
了解电机控制中心之间连接的功能和计算逻辑,
运动皮层、脊髓和肌肉。我们将从解剖学和功能上描述
皮质脊髓神经元投射特异性群体在特定运动模式中的作用
控制因为即使是最简单的运动程序也需要激活许多神经元
在多个大脑区域的人群中,我们还将研究其他皮质和
皮质下区域到大脑到脊髓的输出,以及肌肉活动。这
理解还需要提取大脑区域之间的信息
和神经元细胞类型,并理解在电路中操作的计算,
来实现特定的肌肉激活模式。我们将
提取计算原理,
啮齿类动物之间保守的大脑活动和肌肉活动之间的关系,
,并将构建预测模型。为了
为了实现对运动控制背后的大脑回路的机械理解,我们将
使用闭环光遗传学方法剖析特定神经群体中活动的贡献
操纵我们正在寻求的理解水平需要一个动态的来回
解剖和功能映射实验,计算和概念模型,
和预测的因果检验。我们组建了一个多学科的PI团队,
网络,分享最新的技术来测量和操纵大脑通过一个先进的
成像和仪器核心,根据生成的数据创建和完善电路模型,
可测试的预测,并在团队成员之间建立实时知识交流
通过数据科学核心我们的U19BCP电机控制团队提出了一个全面的,
一个雄心勃勃的项目,以建立计算和电路机制的基础上的经典模式
基于大脑和脊髓之间细胞类型特异性连接的运动控制,
测量和操纵功能和遗传定义的神经群体的技术,以及
最先进的计算工具
灵长
运动控制期间的多区域动态
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui M. Costa其他文献
Rui M. Costa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rui M. Costa', 18)}}的其他基金
2020 Basal Ganglia Gordon Research Conference and Gordon Research Seminar
2020基底节戈登研究大会暨戈登研究研讨会
- 批准号:
9912902 - 财政年份:2019
- 资助金额:
$ 297.63万 - 项目类别:
Computational and circuit mechanisms underlying motor control
电机控制的计算和电路机制
- 批准号:
9983178 - 财政年份:2017
- 资助金额:
$ 297.63万 - 项目类别:
Computational and circuit mechanisms underlying motor control
电机控制的计算和电路机制
- 批准号:
9444169 - 财政年份:2017
- 资助金额:
$ 297.63万 - 项目类别:
Computational and circuit mechanisms underlying motor control
电机控制的计算和电路机制
- 批准号:
10224727 - 财政年份:2017
- 资助金额:
$ 297.63万 - 项目类别:
Dissecting the contributions of activity in specific neural populations to motor control using closed-loop optogenetic manipulations
使用闭环光遗传学操作剖析特定神经群体的活动对运动控制的贡献
- 批准号:
10224735 - 财政年份:2017
- 资助金额:
$ 297.63万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 297.63万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 297.63万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
Studentship