Development of energy harvesters for powering leadless pacemakers from myocardial motion
开发能量采集器,通过心肌运动为无引线起搏器提供动力
基本信息
- 批准号:9518907
- 负责人:
- 金额:$ 21.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:Animal TestingBody TemperatureCardiac pacemakerCategoriesCicatrixClosure by clampCommunicationDevelopmentDevicesDimensionsElectricityElementsEnergy-Generating ResourcesEnsureEpicardiumFatigueFeedbackFutureGenerationsGoalsGuidelinesHarvestHeartHeart ContractilitiesHeart RateHemorrhageImplantIn VitroInfectionLifeLinkLiteratureLocationMagnetic Resonance ImagingMagnetismMechanicsMedical DeviceModelingModernizationMotionMyocardialOperative Surgical ProceduresOutcomeOutputPacemakersPatientsPerformancePeriodicityPower SourcesProceduresProcessProductionResearchRight ventricular structureRunningShapesSolidStructureSurgical suturesSystemTechnologyTestingTimeTissuesVariantVentricularbasecardiac devicecommercializationdensitydesignenergy densityexperimental studyheart motionin vivolung injurymodel designnovelpredicting responseprototyperegenerativeresearch clinical testingresponsetechnology developmentvibration
项目摘要
This project investigates continuous powering of leadless cardiac pacemakers by conversion of mechanical
energy of the heart to electrical energy. This energy conversion process is called vibration energy harvesting.
The central element in piezoelectric vibration energy harvesters (EHs) is a piezoelectric structure. The
structure resonates in response to the ambient oscillations, and its mechanical oscillations are converted to
electrical energy through the piezoelectric phenomenon. The amounts of energy produced by vibration energy
harvesting are typically in the order of microwatts. If EHs are used instead of batteries to power a system, they
will be permanent regenerative power sources and will not need replacement. The fact that EHs are permanent
power sources is instrumental for leadless pacemakers. Unlike conventional pacemakers, leadless
pacemakers cannot be extracted from the heart when their batteries deplete. Thus after about seven years a
new leadless pacemaker must be implanted in the heart which occupies even further ventricular space. We
have shown that an EH can be developed to regeneratively power the conventional pacemakers by conversion
of heart beat induced vibrations to electricity. This could eliminate the need for periodic pacemaker
replacement surgeries. Leadless pacemakers are implanted in the heart and are thus substantially smaller
than conventional pacemakers. This size limit demanded miniature EHs.
Our preliminary studies show that vibration EHs can have larger power density than the leadless pacemaker
batteries. Using an EH instead of a battery will not only result in potentially permanent leadless pacemakers
but also enables adding more functions to the pacemaker. This project involves systematic modeling, design,
optimization, fabrication, and testing of a number of EH designs for leadless pacemakers. Since the typical
shape of a leadless pacemaker is cylindrical, the shape of the EH element should be three-dimensional. This
sets the EH designs in this project aside from the majority of the EH in the literature, which are 2D. The
investigated EHs are divided into two large categories of linear and nonlinear EHs. Nonlinear EHs are more
advanced and more complicated. If properly designed, nonlinear EHs can be very robust to heart rate
variations. The proposed linear EH is a fan-folded structure composed of multiple linked beams clamped at
one end and free at the other end. We use thermal and magnetic buckling to induce nonlinearity in the
nonlinear EH. Development of electromechanical models that can accurately predict the response of the EH
designs is a major goal of this project. These models will be used to optimally design the miniature EHs.
Fabrication and experimental testing of each EH design (through in vitro and animal tests) will both evaluate
the models and calibrate the performance of the EHs. The project also includes extensive reliability analyses to
ensure the long life time of the EH and to ascertain sufficient power production of the EH despite variations of
heart rate and heart contractility among patients.
本项目研究通过机械转换为无导线心脏起搏器的连续供电
心脏的能量转换成电能。这个能量转换过程被称为振动能量收集。
压电振动能量采集器(EH)中的中心元件是压电结构。
结构响应于环境振荡而共振,并且其机械振荡被转换为
通过压电现象产生电能。振动能产生的能量
收集通常是在微瓦的数量级。如果使用EH代替电池来为系统供电,
将是永久性的再生电源,不需要更换。事实上,
电源是无导线起搏器的重要组成部分。与传统起搏器不同,
起搏器在电池耗尽时不能从心脏中取出。因此,大约七年后,
新的无引线起搏器必须植入心脏,心脏占据更大的心室空间。
已经表明,EH可以开发成通过转换为传统起搏器提供再生动力
心脏跳动引起的振动转化为电流。这可以消除对周期性起搏器的需要
无导线起搏器植入心脏,因此体积小得多,
这种尺寸限制要求微型心脏起搏器。
我们的初步研究表明,振动EH可以有更大的功率密度比无引线起搏器
使用EH代替电池不仅会导致潜在的永久性无引线起搏器
还可以为起搏器增加更多的功能。本项目涉及系统建模、设计、
优化、制造和测试用于无引线起搏器的许多EH设计。由于典型的
无引线起搏器的形状是圆柱形的,EH元件的形状应该是三维的。
将本项目中的EH设计与文献中的大多数EH设计(2D)分开。
研究的EH分为线性EH和非线性EH两大类,非线性EH较多,
如果设计得当,非线性EH可以对心率非常鲁棒
所提出的线性EH是由多个连接梁组成的扇形折叠结构,
一端自由,另一端自由。我们使用热屈曲和磁屈曲来诱导非线性,
非线性EH.开发机电模型,可以准确预测EH的响应
设计是这个项目的主要目标。2这些模型将用于优化设计微型电动车。
每个EH设计的制造和实验测试(通过体外和动物测试)都将评估
该项目还包括广泛的可靠性分析,
确保EH的长使用寿命,并确保EH有足够的发电量,尽管存在变化
患者的心率和心脏收缩力。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers.
- DOI:10.1177/1045389x17708344
- 发表时间:2018-03
- 期刊:
- 影响因子:2.7
- 作者:Ansari MH;Karami MA
- 通讯作者:Karami MA
Conjugate unscented transformation-based uncertainty analysis of energy harvesters.
- DOI:10.1177/1045389x18798945
- 发表时间:2018-11
- 期刊:
- 影响因子:2.7
- 作者:Nanda, Aditya;Singla, Puneet;Karami, M. Amin
- 通讯作者:Karami, M. Amin
Piezoelectric Tooth Aligner for Accelerated Orthodontic Tooth Movement.
用于加速正畸牙齿移动的压电牙齿矫正器。
- DOI:10.1109/embc.2018.8513375
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Bani-Hani,Muath;AminKarami,M
- 通讯作者:AminKarami,M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M. Amin Karami其他文献
M. Amin Karami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M. Amin Karami', 18)}}的其他基金
Development of energy harvesters for powering leadless pacemakers from myocardial motion
开发能量采集器,通过心肌运动为无引线起搏器提供动力
- 批准号:
9388130 - 财政年份:2017
- 资助金额:
$ 21.97万 - 项目类别:
相似海外基金
Development of Triple Heat Flux Method for Robust Wearable Core Body Temperature Measurement
开发用于稳健可穿戴核心体温测量的三重热通量方法
- 批准号:
23K19094 - 财政年份:2023
- 资助金额:
$ 21.97万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Calorie Restriction, Body Temperature and Alzheimers Disease
热量限制、体温和阿尔茨海默病
- 批准号:
10727319 - 财政年份:2023
- 资助金额:
$ 21.97万 - 项目类别:
Regulated muscle-based thermogenesis for body temperature regulation
调节基于肌肉的生热作用以调节体温
- 批准号:
DP220102018 - 财政年份:2022
- 资助金额:
$ 21.97万 - 项目类别:
Discovery Projects
Energy metabolism and disease sensitivity determined by body temperature: Lessons from hibernation
由体温决定的能量代谢和疾病敏感性:冬眠的教训
- 批准号:
21K19481 - 财政年份:2021
- 资助金额:
$ 21.97万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
NSF Postdoctoral Fellowship in Biology FY 2021: Using a protoendothermic mammal to understand how body temperature influences nutrient absorption.
2021 财年 NSF 生物学博士后奖学金:利用原吸热哺乳动物了解体温如何影响营养吸收。
- 批准号:
2109649 - 财政年份:2021
- 资助金额:
$ 21.97万 - 项目类别:
Fellowship Award
Practical realization of human body simulation model for predicting body temperature, blood pressure and blood flow rate
预测体温、血压、血流速度的人体仿真模型的实际实现
- 批准号:
20H02307 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Role of CREG1 on the regulation of thermogenic cells and body temperature
CREG1对产热细胞和体温调节的作用
- 批准号:
20K06450 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the molecular mechanisms of body temperature rhythms through a Drosophila model system
通过果蝇模型系统探索体温节律的分子机制
- 批准号:
10440755 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
A Low Cost Remote Body Temperature Monitoring and Symptom Diagnosis Solution
低成本远程体温监测和症状诊断解决方案
- 批准号:
69491 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别:
Feasibility Studies
Exploring the molecular mechanisms of body temperature rhythms through a Drosophila model system
通过果蝇模型系统探索体温节律的分子机制
- 批准号:
9979341 - 财政年份:2020
- 资助金额:
$ 21.97万 - 项目类别: