Harnessing the biophysics of multivalent nanoparticle adhesion to control cell targeting and internalization

利用多价纳米粒子粘附的生物物理学来控制细胞靶向和内化

基本信息

  • 批准号:
    9888996
  • 负责人:
  • 金额:
    $ 22.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT Targeted delivery of nanocarrier contrast and drug delivery agents holds exciting potential for treating major human diseases, but new strategies are needed to maximize targeting efficiency and selectivity. A powerful attribute of nanoparticles is the ability to form multiple bonds with target cells, thereby enhancing overall adhesion strength and internalization rate. However, we currently know little about the factors that govern multivalent nanoparticle binding at the molecular level. Addressing this limitation would dramatically impact the field of targeted delivery and enable unprecedented control over multivalent nanoparticle adhesion. One of the biggest challenges is controlling targeting selectivity between normal and diseased cells that express the target molecule at different levels. Ideally the nanoparticle would display superselectivity, such that a switch-like change in binding efficiency is observed between normal and diseased cells. To date, superselectivity has only been observed in a computational model, but experimental demonstration remains a major goal in the targeting field. In previous work, we developed novel experimental methods for assessing multivalent nanoparticle adhesion dynamics and a computational simulation called Nano Adhesive Dynamics (NAD) that we used to uncover new information about bond number, dynamics, and forces. In this proposal, we will transform our experimental and simulation tools into a versatile and robust design platform that could be used to control nanoparticle binding to, and internalization within, live cells. We will use vascular inflammation, specifically the target ICAM-1, as a model system for this work due to our past experience, large inventory of affinity molecules in published literature, and connection to major diseases. Furthermore, previous work has already established the need for superselective targeting of ICAM-1. We will first add new capabilities to NAD simulations, including incorporation of the initial attachment of nanoparticles from free solution and extension of the methods to nanorods. The second phase will focus on testing molecular bond properties, with new flow chamber experiments performed using a diverse panel of anti-ICAM-1 adhesion molecules with different bond properties, as well as a class of springy peptide linkers that we hypothesize will act as molecular springs that reduce mechanical forces. The final phase of the project will be focused on adapting the work to the context of live endothelial cells, and using the NAD simulations to design and test prospective affinity molecule- nanoparticle formulations that exhibit superselective targeting behavior to normal and inflamed endothelium. The Specific Aims include: (1) advance the NAD simulation framework to model initial attachment and nanorods, (2) evaluate new molecular bond properties, (3) assess multivalent adhesion to endothelial cells, and (4) design a nanocarrier that displays superselectivity. At the conclusion of the work, we will be in ideal position to design nanocarriers that possess unique adhesive properties for targeting different diseases, with the simulation tool serving as the linchpin. This will allow us to go beyond straightforward concepts such as specificity and thermodynamics/ avidity, and instead tailor adhesion for different disease scenarios and ultimately achieve advanced behavior such as superselectivity. Obtaining this capability entirely from experiments under a guess and check format would be far too costly in terms of time, money, and effort. Furthermore, the simulation design tool will offer the versatility needed to address limitations and constrains that will be encountered under in vivo conditions. Future work will seek to validate our new targeted delivery concepts using in vivo animal models of inflammation, atherosclerosis, ischemia-reperfusion injury, and cancer.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jered Brackston Haun其他文献

Jered Brackston Haun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jered Brackston Haun', 18)}}的其他基金

Microfluidic tumor tissue processing platform for single cell diagnostics
用于单细胞诊断的微流控肿瘤组织处理平台
  • 批准号:
    10398180
  • 财政年份:
    2021
  • 资助金额:
    $ 22.48万
  • 项目类别:
Microfluidic tumor tissue processing platform for single cell diagnostics
用于单细胞诊断的微流控肿瘤组织处理平台
  • 批准号:
    10173403
  • 财政年份:
    2021
  • 资助金额:
    $ 22.48万
  • 项目类别:
Microfluidic tumor tissue processing platform for single cell diagnostics
用于单细胞诊断的微流控肿瘤组织处理平台
  • 批准号:
    10631901
  • 财政年份:
    2021
  • 资助金额:
    $ 22.48万
  • 项目类别:
Transforming fluorescence lifetime imaging microscopy into a fast and simple platform for high-content molecular analysis
将荧光寿命成像显微镜转变为快速、简单的高内涵分子分析平台
  • 批准号:
    9320961
  • 财政年份:
    2016
  • 资助金额:
    $ 22.48万
  • 项目类别:
Transforming fluorescence lifetime imaging microscopy into a fast and simple platform for high-content molecular analysis
将荧光寿命成像显微镜转变为快速、简单的高内涵分子分析平台
  • 批准号:
    9148067
  • 财政年份:
    2016
  • 资助金额:
    $ 22.48万
  • 项目类别:
Molecular Detection and Profiling of Circulating Tumor Cells
循环肿瘤细胞的分子检测和分析
  • 批准号:
    7800765
  • 财政年份:
    2010
  • 资助金额:
    $ 22.48万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 22.48万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 22.48万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 22.48万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 22.48万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 22.48万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 22.48万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 22.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了