Transforming fluorescence lifetime imaging microscopy into a fast and simple platform for high-content molecular analysis
将荧光寿命成像显微镜转变为快速、简单的高内涵分子分析平台
基本信息
- 批准号:9148067
- 负责人:
- 金额:$ 26.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAffectAndrogen ReceptorBiocompatibleBiologicalBiological ProcessCancer BiologyCancer DiagnosticsCancer cell lineCellsClinicalColorComplexCytometryDetectionDiagnosticDiseaseEncapsulatedEnergy TransferEngineeringExhibitsFluorescenceFoundationsFutureGoalsHousingHumanIndolentKnowledgeLibrariesLifeLightMalignant NeoplasmsMalignant neoplasm of prostateMass Spectrum AnalysisMethodologyMethodsMolecularMolecular AnalysisMolecular MedicineMolecular ProbesMolecular TargetOpticsPatient CarePilot ProjectsProceduresPropertyProstatic NeoplasmsResolutionSamplingSignal TransductionSilicon DioxideSpecimenSpeedSystemTechniquesTimeTissuesTranslatingTranslationsTumor BiologyTumor Markersamorphous silicatebasecancer typecell typeflexibilityfluorescence imagingimaging platformimprovedin vivo imaginginnovationmicroscopic imagingmolecular diagnosticsmolecular imagingnanoparticlenanoprobeneoplastic cellnext generation sequencingnoveloptical spectraprospectivepublic health relevancespectrographtrendtumor
项目摘要
ABSTRACT
Cancer is an exceedingly complex and dynamic disease, and as our knowledge of tumor
biology has grown, so has the realization that ever more molecular information is needed to
characterize the diverse array of functional states and cell types within heterogeneous tumors.
Extracting this information would aid our basic understanding of cancer biology and enable molecular
diagnostics that could reveal the underlying driver mechanisms that could be targeted for patient care.
This need has driven the current trend towards massive scale “omics” techniques, such as next
generation sequencing and mass spectrometry, but these methods do not offer the cellular resolution or
direct functional detail necessary to understand heterogenous systems and identify rare cell types.
Imaging platforms based on SERS and mass cytometry have the potential to achieve extremely high
numbers of unique probes, but have practical issues in the form of long acquisition times and inherent
technological complexity that will limit future clinical adoption. Fluorescence imaging is the most widely
used detection technique in biological and clinical settings, and enables fast and simple detection of
upwards of ten molecular targets using probes that have different spectral properties. However, a
drastic improvement in multiplexing capacity is needed. Fluorescence lifetime is a property that could
expand the multiplexing capacity of fluorescence imaging, but to date this approach has been limited to
at most two species due to the lack of compatible probes. Here we seek to develop fluorescence
lifetime imaging microscopy (FLIM) into a high-content molecular analysis platform from tumor
specimens while maintaining the speed and simplicity of traditional spectral fluorescence imaging. To
achieve this goal, we will create the first fluorescence “lifetime probe libraries,” which will emit light in
the same spectral window but exhibit unique fluorescence lifetime decays that can be resolved using
the powerful phasor approach. We will populate our lifetime libraries by creating a new class of probes
that house different components in a modular, flexible nanoparticle format. Specifically, we will
encapsulate different fluorescent components at precisely controlled ratios within a silica nanoparticle
or shell, which will allow us to tune probe lifetime without affecting emission spectra. This silica-based
approach will normalize synthesis and bioconjugation procedures, maximize signal intensity through
high loading capacity, be biocompatible, and shield cells from potentially toxic fluorescent components.
Critically, the silica shell will also protect the fluorescent components from environmental effects,
locking in signal properties. We will first use a panel of four different fluorescent species with similar
yellow emission spectra but unique intrinsic lifetimes, and establish methodologies for quantitatively
resolving molecular expression levels of cancer cell lines. Next we will create our tunable nanoprobes
and construct a library with optimally compatible lifetimes, which we expect will include at least 7
nanoprobes. Finally, we will extend our tunable nanoprobe framework to 4 additional spectral windows,
resulting in a combined lifetime and spectral imaging platform with 35 detection channels, and perform
a pilot study using human prostate tumor specimens. Our fluorescence lifetime-based molecular
imaging platform will be both highly multiplexed while also maintaining the speed and simplicity of
traditional fluorescence imaging, which should help drive translation into the clinical arena. Our platform
will also be compatible with live or fixed specimens, diagnostic tissue sections, and even in vivo
imaging applications. This combination of power, speed, simplicity, and flexibility is not currently
available in other high-content molecular analysis platforms.
摘要
癌症是一种极其复杂和动态的疾病,
生物学已经发展,人们意识到需要更多的分子信息来
表征异质性肿瘤内的多种功能状态和细胞类型。
提取这些信息将有助于我们对癌症生物学的基本理解,
诊断,可以揭示潜在的驱动机制,可以针对病人护理。
这种需求推动了当前大规模“组学”技术的趋势,例如next。
代测序和质谱,但这些方法不提供细胞分辨率或
了解异质系统和识别罕见细胞类型所需的直接功能细节。
基于Sers和质谱细胞术的成像平台具有实现极高的成像质量的潜力。
许多独特的探头,但具有实际问题,即采集时间长和固有的
技术复杂性将限制未来的临床应用。荧光成像是最广泛的
在生物和临床环境中使用检测技术,并能够快速简单地检测
使用具有不同光谱特性的探针,但
需要在复用容量方面的显著改进。荧光寿命是一种特性,
扩大荧光成像的多路复用能力,但迄今为止,这种方法仅限于
最多两个物种,因为缺乏兼容的探针。在这里,我们寻求发展荧光
终身成像显微镜(FLIM)成为高内涵的肿瘤分子分析平台
同时保持传统光谱荧光成像的速度和简单性。到
为了实现这一目标,我们将创建第一个荧光“寿命探针库”,它将在
相同的光谱窗口,但表现出独特的荧光寿命衰减,
强大的相量方法我们将通过创建一个新的探测器类来填充生存期库
它们以模块化、灵活的纳米颗粒形式容纳不同的组件。具体来说,我们将
将不同的荧光成分以精确控制的比例封装在二氧化硅纳米颗粒内,
或外壳,这将使我们能够调整探针寿命,而不影响发射光谱。这种硅基
该方法将使合成和生物缀合程序标准化,通过
高负载能力、生物相容性和保护细胞免受潜在毒性荧光组分的影响。
重要的是,二氧化硅壳还将保护荧光组分免受环境影响,
锁定信号属性。我们将首先使用四种不同荧光物质的面板,其具有相似的荧光强度。
黄色的发射光谱,但独特的固有寿命,并建立定量的方法
解析癌细胞系的分子表达水平。接下来,我们将创建可调纳米探针
并构建一个具有最佳兼容寿命的库,我们预计至少包括7个
纳米探针最后,我们将把我们的可调纳米探针框架扩展到4个额外的光谱窗口,
从而形成具有35个检测通道的组合寿命和光谱成像平台,
一项使用人类前列腺肿瘤标本的初步研究。我们的基于荧光寿命的分子
成像平台将是高度多路复用的,同时还保持速度和简单性,
传统的荧光成像,这将有助于推动转化到临床竞技场。我们的平台
还将与活的或固定的标本、诊断组织切片、甚至体内
成像应用。这种功能、速度、简单性和灵活性的结合目前还不是
可用于其他高含量分子分析平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jered Brackston Haun其他文献
Jered Brackston Haun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jered Brackston Haun', 18)}}的其他基金
Microfluidic tumor tissue processing platform for single cell diagnostics
用于单细胞诊断的微流控肿瘤组织处理平台
- 批准号:
10398180 - 财政年份:2021
- 资助金额:
$ 26.14万 - 项目类别:
Microfluidic tumor tissue processing platform for single cell diagnostics
用于单细胞诊断的微流控肿瘤组织处理平台
- 批准号:
10173403 - 财政年份:2021
- 资助金额:
$ 26.14万 - 项目类别:
Microfluidic tumor tissue processing platform for single cell diagnostics
用于单细胞诊断的微流控肿瘤组织处理平台
- 批准号:
10631901 - 财政年份:2021
- 资助金额:
$ 26.14万 - 项目类别:
Harnessing the biophysics of multivalent nanoparticle adhesion to control cell targeting and internalization
利用多价纳米粒子粘附的生物物理学来控制细胞靶向和内化
- 批准号:
9888996 - 财政年份:2020
- 资助金额:
$ 26.14万 - 项目类别:
Transforming fluorescence lifetime imaging microscopy into a fast and simple platform for high-content molecular analysis
将荧光寿命成像显微镜转变为快速、简单的高内涵分子分析平台
- 批准号:
9320961 - 财政年份:2016
- 资助金额:
$ 26.14万 - 项目类别:
Molecular Detection and Profiling of Circulating Tumor Cells
循环肿瘤细胞的分子检测和分析
- 批准号:
7800765 - 财政年份:2010
- 资助金额:
$ 26.14万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 26.14万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 26.14万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 26.14万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 26.14万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 26.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 26.14万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 26.14万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Studentship