Synaptic Control of Glutamate Homeostasis
谷氨酸稳态的突触控制
基本信息
- 批准号:9888456
- 负责人:
- 金额:$ 36.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAutocrine CommunicationAutoreceptorsBiologicalBiological ModelsCalciumCellsCellular biologyChloride ChannelsChloridesChronicCouplesDataDefectDevelopmentDiseaseDown-RegulationDrosophila genusElectrophysiology (science)EndocytosisEnsureEpilepsyEtiologyExcitatory SynapseFragile X SyndromeFunctional ImagingFunctional disorderGenerationsGeneticGlutamate ReceptorGlutamate TransporterGlutamatesGoalsGrowthHealthHomeostasisHumanImageImaging TechniquesIndividualInvertebratesKnowledgeLeadMediatingMental DepressionModelingMolecularNerve DegenerationNervous system structureNeurogliaNeuromuscular JunctionNeuronsOrganismOutcomePharmacologyPhysiologicalPlayPresynaptic TerminalsProbabilityProcessPropertyRegulationReportingResearchRodentRoleSchizophreniaSeizuresSignal TransductionSiteStimulusStructureSynapsesSynaptic VesiclesSynaptic plasticitySystemTechnologyTestingTherapeuticToxic effectWorkdesignexcitotoxicityexperienceexperimental studyflexibilityglutamate-gated chloride channelglutamatergic signalingin vivoinnovationinsightnervous system disorderneural circuitneuropathologyneuropsychiatric disorderneurotransmissionneurotransmitter releasenovelnovel therapeutic interventionpostsynapticpreservationpresynapticpresynaptic neuronspreventreceptorresponsereuptakesynaptic functiontraffickingtransmission processvesicular release
项目摘要
Homeostatic signaling systems are crucial forms of biological regulation that permit flexible yet
stable information transfer in the nervous system. These fundamental mechanisms operate to
maintain such properties as synaptic strength and glutamate levels within stable physiological
ranges. Although intensive research has been focused on understanding how excitatory synapses
are homeostatically modulated to stabilize synaptic strength, far less is known about how these
synapses adjust to control glutamate release itself. Excess glutamate release can lead to a variety
of diseases and dysfunctions in the nervous system, contributing to seizures, excitotoxity, and
neurodegeneration. Here, we propose to characterize a glutamate homeostat that controls
presynaptic function using the Drosophila neuromuscular junction as a unique and powerful model
system. At this glutamatergic synapse, excess presynaptic glutamate secretion induces a
homeostatic inhibition of neurotransmitter release, an adaptation referred to as presynaptic
homeostatic depression (PHD). This process parallels a similar phenomenon observed in a
variety of other organisms, including mammalian central synapses. We hypothesize that excess
glutamate is sensed by a presynaptic glutamate receptor and activates an autocrine signaling
system to homeostatically depress synaptic vesicle release. To test this model, we will use a
systematic electrophysiology screen to test glutamate receptors in Drosophila for roles in PHD.
Next, we will leverage a combination of cell biology, heterologous expression, pharmacology, and
innovative functional imaging techniques to determine the mechanisms through which excess
glutamate signals a precise reduction in presynaptic vesicle release. Finally, we will assess how
synapses, neurons, and glia adapt to chronic glutamate imbalance using several approaches,
including a cell-specific translational profiling technology we have developed as well as a new
generation of glutamate indicators. Together, these experiments will advance our understanding
of the mechanisms that endow synapses with the ability homeostatically tune glutamate release,
and will identify maladaptive responses to glutamate imbalance in the nervous system. Ultimately,
this knowledge will inform therapeutic strategies towards counteracting diseases associated with
glutamate imbalance, including epilepsy, fragile X syndrome and neurodegeneration.
动态平衡信号系统是生物调节的重要形式,允许灵活而
神经系统中稳定的信息传递。这些基本机制的作用是
将突触强度和谷氨酸水平等特性维持在稳定的生理水平
范围。尽管密集的研究一直集中在了解兴奋性突触如何
是通过稳态调节来稳定突触强度的,但关于它们是如何发挥作用的知之甚少。
突触进行调节以控制谷氨酸自身的释放。过多的谷氨酸释放会导致多种
神经系统疾病和功能障碍,导致癫痫发作、兴奋性毒性和
神经退行性变。在这里,我们建议描述一种控制谷氨酸稳态的
利用果蝇神经肌肉接头作为一种独特而强大的模型的突触前功能
系统。在这个谷氨酸能突触,过量的突触前谷氨酸分泌诱导了
神经递质释放的动态平衡抑制,一种称为突触前的适应
动态平衡抑制(PHD)。这一过程与在
多种其他生物,包括哺乳动物的中央突触。我们假设过多的
谷氨酸由突触前谷氨酸受体感受,并激活自分泌信号
体内恒定抑制突触囊泡释放的系统。为了测试此模型,我们将使用
系统电生理学筛选以测试果蝇谷氨酸受体在PHD中的作用。
接下来,我们将利用细胞生物学、异源表达、药理学和
创新的功能成像技术,以确定过度
谷氨酸是突触前囊泡释放精确减少的信号。最后,我们将评估如何
突触、神经元和神经胶质细胞通过几种途径适应慢性谷氨酸失衡,
包括我们开发的特定于细胞的翻译图谱技术以及新的
谷氨酸指示剂的生成。总而言之,这些实验将增进我们对
在赋予突触自我平衡调节谷氨酸释放能力的机制中,
并将确定神经系统中对谷氨酸失衡的适应不良反应。最终,
这一知识将成为对抗与以下疾病相关疾病的治疗策略的依据
谷氨酸失衡,包括癫痫、脆性X综合征和神经变性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DION KAI DICKMAN其他文献
DION KAI DICKMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DION KAI DICKMAN', 18)}}的其他基金
Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
- 批准号:
10841899 - 财政年份:2023
- 资助金额:
$ 36.09万 - 项目类别:
Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸突触的分子同质性产生功能多样性
- 批准号:
10583404 - 财政年份:2022
- 资助金额:
$ 36.09万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10062396 - 财政年份:2020
- 资助金额:
$ 36.09万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10523895 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
9195756 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
9412197 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
10539339 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:














{{item.name}}会员




