Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
基本信息
- 批准号:9412197
- 负责人:
- 金额:$ 46.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAutistic DisorderAutoreceptorsBiological ModelsBipolar DisorderCalciumChemosensitizationComplexDefectDevelopmentDiseaseDrosophila genusElectrophysiology (science)EngineeringEnsureEpilepsyEtiologyExtracellular DomainFMR1FamilyFoundationsFragile X SyndromeFunctional disorderGenesGeneticGenetic ScreeningGlutamate ReceptorGoalsGrowthHealthHomeostasisHumanImageImpairmentIntegral Membrane ProteinIntellectual functioning disabilityInvertebratesKainic Acid ReceptorsKnowledgeLeadLinkMental disordersMicroscopyMolecularMuscleNervous System PhysiologyNervous system structureNeuromuscular JunctionNeuronsNeurophysiology - biologic functionNeurotransmitter ReceptorOrganismOutcomePharmacologyPhysiologicalPlayPresynaptic TerminalsProcessPropertyProteinsReceptor SignalingResolutionRoleSchizophreniaSignal TransductionStructureSusceptibility GeneSynapsesSynaptic TransmissionSynaptic plasticitySystemTimeTranscriptWorkaging brainalpha Bungarotoxinbaseexperienceexperimental studyflexibilitygenetic analysisgenetic approachgenetic manipulationimaging approachinnovationkainatemutantnervous system disorderneural circuitneuropsychiatric disorderneuropsychiatrynovelpostsynapticpresynapticpublic health relevancereceptorreceptor functionrelating to nervous systemresponsescreeningsensorsynaptic functiontherapeutic targettrafficking
项目摘要
DESCRIPTION (provided by applicant): Nervous systems from invertebrates to humans have shown remarkably resilient and adaptive abilities to maintain stable functionality despite challenges that may otherwise lead to suboptimal or uncontrolled activity. In each of these systems, perturbations to synaptic activity initially lead to corresponding alterations in synaptic
strength. However, given sufficient time, nervous systems in these organisms adapt by modulating presynaptic release or postsynaptic neurotransmitter receptors to re-target previous levels of synaptic strength. This process, termed homeostatic synaptic plasticity, is thought to enable stable, yet flexible, synaptic activity and to play key roles in tuning neural function in health and disease. Yet there is a major gap in our knowledge of the molecular and cellular mechanisms that endow synapses with these extraordinary abilities. The long term goal of this proposal is to identify the genes and elucidate the mechanisms that achieve and maintain the homeostatic control of synaptic strength. To understand the principles governing homeostatic synaptic signaling, we will utilize the Drosophila neuromuscular junction, which has been established as a powerful genetic system to study this process. This proposal will use a combination of genetic analysis, electrophysiology, and imaging approaches to investigate the homeostatic mechanisms that enhance presynaptic release in response to a perturbation to postsynaptic neurotransmitter receptor function. In particular, three genes encoding neuronal transmembrane proteins have been identified that appear to function together in the presynaptic terminal to promote the calcium-dependent, homeostatic potentiation of synaptic transmission. Interestingly, these genes have been associated with epilepsy, schizophrenia, and bipolar disorder. The proposed experiments will first characterize these molecules in synaptic function and homeostatic plasticity. Confocal and super-resolution microscopy will then be utilized to reveal the subsynaptic localization and cellular activities of these proteins. Finally, complementary forward genetic screens are proposed to identify new genes that orchestrate homeostatic synaptic plasticity. Together, this work is expected to reveal new homeostatic genes and mechanisms that control the adaptive modulation of synaptic strength and provide a foundation from which to understand how transcellular homeostatic signaling systems more generally are established in the nervous system.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DION KAI DICKMAN其他文献
DION KAI DICKMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DION KAI DICKMAN', 18)}}的其他基金
Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
- 批准号:
10841899 - 财政年份:2023
- 资助金额:
$ 46.75万 - 项目类别:
Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸突触的分子同质性产生功能多样性
- 批准号:
10583404 - 财政年份:2022
- 资助金额:
$ 46.75万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10062396 - 财政年份:2020
- 资助金额:
$ 46.75万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10523895 - 财政年份:2015
- 资助金额:
$ 46.75万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
9195756 - 财政年份:2015
- 资助金额:
$ 46.75万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
10539339 - 财政年份:2015
- 资助金额:
$ 46.75万 - 项目类别:
相似海外基金
Accelerated Magnetic Resonance Elastography for Brain Stiffness Analysis in Children with Classic Autistic Disorder
加速磁共振弹性成像用于经典自闭症儿童脑僵硬分析
- 批准号:
10223915 - 财政年份:2020
- 资助金额:
$ 46.75万 - 项目类别:
Accelerated Magnetic Resonance Elastography for Brain Stiffness Analysis in Children with Classic Autistic Disorder
加速磁共振弹性成像用于经典自闭症儿童脑僵硬分析
- 批准号:
10457950 - 财政年份:2020
- 资助金额:
$ 46.75万 - 项目类别:
Development of PC driven concept learning and achievement evaluation system for the children with autistic disorder
PC驱动的自闭症儿童概念学习和成绩评估系统的开发
- 批准号:
25590285 - 财政年份:2013
- 资助金额:
$ 46.75万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Evaluation of Autistic Disorder using Artificial School Class Game
使用人工学校课堂游戏评估自闭症
- 批准号:
23650117 - 财政年份:2011
- 资助金额:
$ 46.75万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
DENSE MAPPING OF CANDIDATE REGIONS LINKED TO AUTISTIC DISORDER
与自闭症相关的候选区域的密集绘图
- 批准号:
8167215 - 财政年份:2010
- 资助金额:
$ 46.75万 - 项目类别:
DENSE MAPPING OF CANDIDATE REGIONS LINKED TO AUTISTIC DISORDER
与自闭症相关的候选区域的密集绘图
- 批准号:
7951908 - 财政年份:2009
- 资助金额:
$ 46.75万 - 项目类别:
OPEN LABEL RISPERIDONE IN CHILDREN AND ADOLESCENTS WITH AUTISTIC DISORDER
开放标签利培酮用于患有自闭症的儿童和青少年
- 批准号:
7953733 - 财政年份:2009
- 资助金额:
$ 46.75万 - 项目类别:
DENSE MAPPING OF CANDIDATE REGIONS LINKED TO AUTISTIC DISORDER
与自闭症相关的候选区域的密集绘图
- 批准号:
7719250 - 财政年份:2008
- 资助金额:
$ 46.75万 - 项目类别:
A STADY ON THE UNIVERSAL ASSISTIVE TECHNOLOGY DEVICES TO DEVELOP COMMUNICABILITY OF THE PEOPLE WITH MENTAL RETARDETION, AUTISTIC DISORDER AND OTHER DISABILITIES
开发智力低下、自闭症和其他残疾人沟通能力的通用辅助技术设备的研究
- 批准号:
19300281 - 财政年份:2007
- 资助金额:
$ 46.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
sensorimotor gating processing in autistic disorder ; functional magnetic resonance imaging study
自闭症障碍中的感觉运动门控处理;
- 批准号:
19591348 - 财政年份:2007
- 资助金额:
$ 46.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




