Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
基本信息
- 批准号:9195756
- 负责人:
- 金额:$ 36.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAutistic DisorderAutoreceptorsBiological ModelsBipolar DisorderCalciumChemosensitizationComplexDefectDevelopmentDiseaseDrosophila genusElectrophysiology (science)EngineeringEnsureEpilepsyEtiologyExtracellular DomainFMR1FamilyFoundationsFragile X SyndromeFunctional disorderGenesGeneticGenetic ScreeningGlutamate ReceptorGoalsGrowthHealthHomeostasisHumanImageImpairmentIntegral Membrane ProteinIntellectual functioning disabilityInvertebratesKainic Acid ReceptorsKnowledgeLeadLinkMental disordersMicroscopyMolecularMuscleNervous System PhysiologyNervous system structureNeuromuscular JunctionNeuronsNeurophysiology - biologic functionNeurotransmitter ReceptorOrganismOutcomePharmacologyPhysiologicalPlayPresynaptic TerminalsProcessPropertyProteinsReceptor SignalingResolutionRoleSchizophreniaSignal TransductionStructureSusceptibility GeneSynapsesSynaptic TransmissionSynaptic plasticitySystemTimeTranscriptWorkaging brainalpha Bungarotoxinbaseexperienceexperimental studyflexibilitygenetic analysisgenetic approachgenetic manipulationimaging approachinnovationkainatemutantnervous system disorderneural circuitneuropsychiatric disorderneuropsychiatrynovelpostsynapticpresynapticpublic health relevancereceptorreceptor functionrelating to nervous systemresponsescreeningsensorsynaptic functiontherapeutic targettrafficking
项目摘要
DESCRIPTION (provided by applicant): Nervous systems from invertebrates to humans have shown remarkably resilient and adaptive abilities to maintain stable functionality despite challenges that may otherwise lead to suboptimal or uncontrolled activity. In each of these systems, perturbations to synaptic activity initially lead to corresponding alterations in synaptic
strength. However, given sufficient time, nervous systems in these organisms adapt by modulating presynaptic release or postsynaptic neurotransmitter receptors to re-target previous levels of synaptic strength. This process, termed homeostatic synaptic plasticity, is thought to enable stable, yet flexible, synaptic activity and to play key roles in tuning neural function in health and disease. Yet there is a major gap in our knowledge of the molecular and cellular mechanisms that endow synapses with these extraordinary abilities. The long term goal of this proposal is to identify the genes and elucidate the mechanisms that achieve and maintain the homeostatic control of synaptic strength. To understand the principles governing homeostatic synaptic signaling, we will utilize the Drosophila neuromuscular junction, which has been established as a powerful genetic system to study this process. This proposal will use a combination of genetic analysis, electrophysiology, and imaging approaches to investigate the homeostatic mechanisms that enhance presynaptic release in response to a perturbation to postsynaptic neurotransmitter receptor function. In particular, three genes encoding neuronal transmembrane proteins have been identified that appear to function together in the presynaptic terminal to promote the calcium-dependent, homeostatic potentiation of synaptic transmission. Interestingly, these genes have been associated with epilepsy, schizophrenia, and bipolar disorder. The proposed experiments will first characterize these molecules in synaptic function and homeostatic plasticity. Confocal and super-resolution microscopy will then be utilized to reveal the subsynaptic localization and cellular activities of these proteins. Finally, complementary forward genetic screens are proposed to identify new genes that orchestrate homeostatic synaptic plasticity. Together, this work is expected to reveal new homeostatic genes and mechanisms that control the adaptive modulation of synaptic strength and provide a foundation from which to understand how transcellular homeostatic signaling systems more generally are established in the nervous system.
描述(申请人提供):从无脊椎动物到人类的神经系统已经显示出显著的弹性和适应能力,以保持稳定的功能,尽管挑战可能导致次优或不受控制的活动。在这些系统中,对突触活动的扰动最初会导致突触的相应变化
力量。然而,如果有足够的时间,这些生物体中的神经系统通过调节突触前释放或突触后神经递质受体来适应,以重新定位之前的突触强度水平。这一过程被称为稳态突触可塑性,被认为能够实现稳定而灵活的突触活动,并在调节健康和疾病的神经功能方面发挥关键作用。然而,我们对赋予突触这些非凡能力的分子和细胞机制的了解存在很大差距。这一建议的长期目标是识别基因,并阐明实现和维持对突触强度的动态平衡控制的机制。为了了解动态平衡突触信号传递的原理,我们将利用果蝇神经肌肉接头来研究这一过程,果蝇神经肌肉接头已被建立为一个强大的遗传系统。这项建议将结合遗传分析、电生理学和成像方法来研究在突触后神经递质受体功能的扰动下促进突触前释放的动态平衡机制。特别是,三个编码神经元跨膜蛋白的基因已经被发现,它们似乎在突触前末端共同发挥作用,促进突触传递的钙依赖、内稳态增强。有趣的是,这些基因与癫痫、精神分裂症和双相情感障碍有关。拟议的实验将首先描述这些分子在突触功能和稳态可塑性方面的特征。然后将利用共聚焦显微镜和超分辨率显微镜来揭示这些蛋白质的突触下定位和细胞活动。最后,提出了互补的正向遗传筛选,以确定协调内稳态突触可塑性的新基因。总之,这项工作有望揭示控制突触强度的适应性调节的新的动态平衡基因和机制,并提供一个基础,以了解跨细胞动态平衡信号系统是如何在神经系统中建立的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DION KAI DICKMAN其他文献
DION KAI DICKMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DION KAI DICKMAN', 18)}}的其他基金
Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
- 批准号:
10841899 - 财政年份:2023
- 资助金额:
$ 36.09万 - 项目类别:
Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸突触的分子同质性产生功能多样性
- 批准号:
10583404 - 财政年份:2022
- 资助金额:
$ 36.09万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10062396 - 财政年份:2020
- 资助金额:
$ 36.09万 - 项目类别:
Administrative Supplement (Diversity) to Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制分子机制的行政补充(多样性)
- 批准号:
10523895 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
9412197 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Molecular Mechanisms Governing the Homeostatic Control of Synaptic Strength
突触强度稳态控制的分子机制
- 批准号:
10539339 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
相似海外基金
Accelerated Magnetic Resonance Elastography for Brain Stiffness Analysis in Children with Classic Autistic Disorder
加速磁共振弹性成像用于经典自闭症儿童脑僵硬分析
- 批准号:
10223915 - 财政年份:2020
- 资助金额:
$ 36.09万 - 项目类别:
Accelerated Magnetic Resonance Elastography for Brain Stiffness Analysis in Children with Classic Autistic Disorder
加速磁共振弹性成像用于经典自闭症儿童脑僵硬分析
- 批准号:
10457950 - 财政年份:2020
- 资助金额:
$ 36.09万 - 项目类别:
Development of PC driven concept learning and achievement evaluation system for the children with autistic disorder
PC驱动的自闭症儿童概念学习和成绩评估系统的开发
- 批准号:
25590285 - 财政年份:2013
- 资助金额:
$ 36.09万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Evaluation of Autistic Disorder using Artificial School Class Game
使用人工学校课堂游戏评估自闭症
- 批准号:
23650117 - 财政年份:2011
- 资助金额:
$ 36.09万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
DENSE MAPPING OF CANDIDATE REGIONS LINKED TO AUTISTIC DISORDER
与自闭症相关的候选区域的密集绘图
- 批准号:
8167215 - 财政年份:2010
- 资助金额:
$ 36.09万 - 项目类别:
DENSE MAPPING OF CANDIDATE REGIONS LINKED TO AUTISTIC DISORDER
与自闭症相关的候选区域的密集绘图
- 批准号:
7951908 - 财政年份:2009
- 资助金额:
$ 36.09万 - 项目类别:
OPEN LABEL RISPERIDONE IN CHILDREN AND ADOLESCENTS WITH AUTISTIC DISORDER
开放标签利培酮用于患有自闭症的儿童和青少年
- 批准号:
7953733 - 财政年份:2009
- 资助金额:
$ 36.09万 - 项目类别:
DENSE MAPPING OF CANDIDATE REGIONS LINKED TO AUTISTIC DISORDER
与自闭症相关的候选区域的密集绘图
- 批准号:
7719250 - 财政年份:2008
- 资助金额:
$ 36.09万 - 项目类别:
A STADY ON THE UNIVERSAL ASSISTIVE TECHNOLOGY DEVICES TO DEVELOP COMMUNICABILITY OF THE PEOPLE WITH MENTAL RETARDETION, AUTISTIC DISORDER AND OTHER DISABILITIES
开发智力低下、自闭症和其他残疾人沟通能力的通用辅助技术设备的研究
- 批准号:
19300281 - 财政年份:2007
- 资助金额:
$ 36.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
sensorimotor gating processing in autistic disorder ; functional magnetic resonance imaging study
自闭症障碍中的感觉运动门控处理;
- 批准号:
19591348 - 财政年份:2007
- 资助金额:
$ 36.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)