Mechanistic studies of peptide modifying radical S-adenosylmethionine enzymes PqqE and MftC
肽修饰自由基S-腺苷甲硫氨酸酶PqqE和MftC的机理研究
基本信息
- 批准号:9889972
- 负责人:
- 金额:$ 6.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AnabolismBacteriaBindingBiologicalCarbonCell NucleusChemicalsCollectionComplementCouplingCysteineDataDecarboxylationElectron Nuclear Double ResonanceEnzymesFamilyFoundationsFreezingGeometryGlutamatesHumanIndividualInvestigationIronIsotope LabelingKnowledgeLabelLifeMediatingMetalloproteinsMethodsModificationMossbauer SpectroscopyNatureOrganismOxidation-ReductionPQQ CofactorPeptidesPhysiologic pulsePlayPositioning AttributePublishingReactionReportingResearchRoleS-AdenosylmethionineSamplingSpectrum AnalysisStructureSulfurSystemTechniquesTestingTimeTyrosineVariantanalogchemical reactioncofactordesignelectronic structureexperimental studyformate acetyltransferase activating enzymeinsightinterestmemberoxidationpeptide analogspectroscopic dataunnatural amino acids
项目摘要
Project Summary/Abstract (Mark Nesbit)
The superfamily of radical S-adenosylmethionine (SAM) enzymes (RSEs) are responsible for catalyzing
a wide variety of unusual and difficult chemical reactions which are critical for the survival of living organisms
from bacteria to humans. RSEs are identified by binding of a redox active [4Fe-4S] cluster through three
cysteine residues (typically from a CX3CX2C sequence). The initial step in RSE catalyzed reactions where
SAM binds to the [4Fe-4S] cluster and is reduced to generate Ado• (5’-deoxyadenosyl radical) appears to be
common to all RSEs. However, despite having many structural similarities and sharing a common initiation
step RSEs are able to catalyze a wide variety of chemical transformations and are involved in peptide
modification, metalloprotein cluster assembly and cofactor biosynthesis. Two RSEs involved in peptide
modification are PqqE and MftC. PqqE catalyzes a C-C bond forming step in the biosynthesis of the redox
cofactor PQQ. MftC catalyzes the oxidative decarboxylation of the C-terminus tyrosine residue in the MftA
peptide as a part of the biosynthesis of the proposed redox cofactor mycofactocin. Studying the mechanisms
by which these genetically related enzymes are able to catalyze vastly different chemical reactions will provide
valuable insight into the varied functionality of RSEs in nature.
The planned investigation will interrogate the mechanism of the C-C bond forming step in PQQ
biosynthesis catalyzed by the radical SAM enzyme PqqE and the oxidative decarboxylation of a C-terminus
tyrosine residue catalyzed by MftC. Continuous wave EPR, and pulsed methods such as ENDOR will be able to
intimately probe the nature of potential radical organic and organometallic intermediates. The use of non-natural
amino acids designed to stabilize potential radical intermediates and incorporated into analogs of the peptide
substrates will assist in these experiments. Additional spectroscopic methods such as rapid freeze-quench 57Fe
Mössbauer spectroscopy will provide data which complements the EPR studies allowing for observation of all
Fe nuclei in a sample under turnover conditions. The data produced by these experiments will help to further the
mechanistic understanding of the diverse array of biological reactions catalyzed by radical SAM enzymes and
provide additional characterization of physical and electronic structures of the PqqE and MftC under catalytically
relevant conditions. Additionally, these methods may be used to study other RSEs and will provide a strong
spectroscopic foundation of knowledge about the mechanisms by which this diverse family of enzymes
accomplishes the unique biological roles they have adapted to fill.
项目总结/摘要(Mark内斯比特)
自由基S-腺苷甲硫氨酸(SAM)酶(RSE)超家族负责催化
各种各样的不寻常的和困难的化学反应,这些反应对生物体的生存至关重要
从细菌到人类。RSE通过氧化还原活性[4Fe-4S]簇通过三个
半胱氨酸残基(通常来自CX 3CX 2C序列)。RSE催化反应的初始步骤,
SAM与[4Fe-4S]簇结合并被还原生成Ado·(5 '-脱氧腺苷自由基),
这是所有RSE的共同点。然而,尽管有许多结构上的相似之处,
步骤RSE能够催化多种化学转化,
修饰、金属蛋白簇组装和辅因子生物合成。两个RSE参与肽
修饰是PqqE和Mftc。PqqE催化氧化还原酶的生物合成中的C-C键形成步骤。
辅因子PQQ。MftC催化MftA中C-末端酪氨酸残基的氧化脱羧
肽作为建议的氧化还原辅因子mycofactocin的生物合成的一部分。研究机制
这些基因相关的酶能够催化截然不同的化学反应,
对RSE在自然界中的各种功能的宝贵见解。
计划的研究将询问PQQ中C-C键形成步骤的机制
由自由基SAM酶PqqE催化的生物合成和C-末端的氧化脱羧
酪氨酸残基由MfTC催化。连续波EPR和脉冲方法,如ENDOR,将能够
深入探索潜在的自由基有机和有机金属中间体的性质。使用非自然
设计用于稳定潜在自由基中间体并掺入肽类似物中的氨基酸
衬底将有助于这些实验。其他光谱方法,如快速冷冻淬火57 Fe
穆斯堡尔光谱学将提供补充EPR研究的数据,允许观察所有
翻转条件下样品中的Fe核。这些实验产生的数据将有助于进一步研究
对自由基SAM酶催化的各种生物反应的机理理解,
提供了在催化下PqqE和Mftc的物理和电子结构的额外表征,
相关条件。此外,这些方法可用于研究其他RSE,并将提供强有力的
光谱基础知识的机制,通过这种不同的家庭酶
完成了它们所适应的独特生物学角色。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A Nesbit其他文献
Mark A Nesbit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A Nesbit', 18)}}的其他基金
Mechanistic studies of peptide modifying radical S-adenosylmethionine enzymes PqqE and MftC
肽修饰自由基S-腺苷甲硫氨酸酶PqqE和MftC的机理研究
- 批准号:
10373580 - 财政年份:2018
- 资助金额:
$ 6.53万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 6.53万 - 项目类别:
Fellowship
Evaluation and application of binding ability between mycotoxin and lactic acid bacteria cell wall components using kinetic analysis.
动力学分析评价霉菌毒素与乳酸菌细胞壁成分结合能力及应用
- 批准号:
22K05515 - 财政年份:2022
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional studies of iron uptake ATP-binding cassette transporters (ABC transporters) in Gram-negative bacteria
革兰氏阴性菌中铁摄取 ATP 结合盒转运蛋白(ABC 转运蛋白)的结构和功能研究
- 批准号:
20K22561 - 财政年份:2020
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation of virulence mechanism of Gram-positive bacteria regulated by various RNA binding proteins
不同RNA结合蛋白调控革兰氏阳性菌毒力机制的研究
- 批准号:
19H03466 - 财政年份:2019
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Xenophagy recognizes bacteria through carbohydrate-binding ubiquitin ligase complex
异体吞噬通过碳水化合物结合泛素连接酶复合物识别细菌
- 批准号:
18K07109 - 财政年份:2018
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on binding mechanism of lactic acid bacteria to the host via anchorless proteins
乳酸菌通过锚定蛋白与宿主结合机制的研究
- 批准号:
18K05405 - 财政年份:2018
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding DNA-binding by type IV pilins: key event during transformation in naturally competent bacteria
了解 IV 型菌毛蛋白的 DNA 结合:自然感受态细菌转化过程中的关键事件
- 批准号:
MR/P022197/1 - 财政年份:2017
- 资助金额:
$ 6.53万 - 项目类别:
Research Grant
Development of novel caries suppression method targeting polymer binding domain of plaque constituting bacteria
开发针对牙菌斑构成细菌的聚合物结合域的新型防龋方法
- 批准号:
15K20591 - 财政年份:2015
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The differing biological fates of DNA minor groove-binding (MGB) antibiotics in Gram-negative and Gram-Positive bacteria.
DNA 小沟结合 (MGB) 抗生素在革兰氏阴性和革兰氏阳性细菌中的不同生物学命运。
- 批准号:
BB/K019600/1 - 财政年份:2014
- 资助金额:
$ 6.53万 - 项目类别:
Research Grant
Domoic acid-binding substance found in bacteria isolated from causative diatom of domoic acid
从软骨藻酸致病硅藻中分离出的细菌中发现软骨藻酸结合物质
- 批准号:
23658175 - 财政年份:2011
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research