Effects of microgravity on the structure and function of proximal and distal tubule MPS
微重力对近远曲小管MPS结构和功能的影响
基本信息
- 批准号:9890028
- 负责人:
- 金额:$ 38.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdenosine TriphosphateAdverse effectsBiologicalBiological SciencesBone remodelingCalciumCalcium OxalateCarrier ProteinsCell PolarityCell modelCell physiologyCellular StructuresChemical ExposureChronicClinicCollaborationsCritical PathwaysCrystallizationDehydrationDevelopmentDiabetic NephropathyDietary SodiumDietary intakeDihydroxycholecalciferolsDiseaseDisease PathwayDisease ProgressionDisease susceptibilityDistalDistal convoluted renal tubule structureElectrolytesEnvironmentEpithelialEpithelial CellsEpitheliumExposure toFat-Soluble VitaminForce of GravityFunctional disorderGeneral PopulationGlucoseGlucose TransporterGoalsGravitationHealthHenle&aposs loopHomeostasisIndividualInternationalIonsKidneyKidney CalculiKidney DiseasesKnowledgeLDL-Receptor Related Protein 2MaintenanceMediatingMedicalMedical emergencyMetabolicMicrogravityModelingNephritisNephronsOsteoporosisOsteoporosis preventionOxalatesPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPhasePhysiologicalPlanet EarthPotassiumPreventionProcessProteinsProteinuriaProximal Kidney TubulesRecyclingResearch DesignResearch SupportRiskSaltsSerum ProteinsSodiumSpace FlightStructureSystemTechnologyTimeToxicant exposureToxinTubular formationUniversitiesUrineVitamin DWashingtonWaterbonedesignenvironmental chemicalexperienceglucose transportimprovedinnovationkidney dysfunctionmicrophysiology systemnew therapeutic targetnovelorgan on a chippeptide drugpreventprotein transportresponseresponse to injurysmall moleculesolutespace stationuptakeurinarywater conservation
项目摘要
Abstract
Kidney dysfunction can precipitate serious medical conditions including proteinuria, osteoporosis, and
formation of kidney stones. These conditions occur more frequently, and progress faster, in crewmembers
stationed on the International Space Station. Current static models of the proximal and distal tubules are
unable to recapitulate cellular functions including protein reabsorption via megalin, vitamin D metabolic
bioactivation, and micro-crystal mediated injury response. We have developed a microphysiologic model of the
proximal tubule using primary proximal tubule epithelial cells (PTECs) that has successfully demonstrated
physiologic cellular structure/polarization, transport of glucose and drug substrates, bioactivation of inactive 25-
hydroxy vitamin D to 1α,25-dihydroxyvitamin D (which promotes beneficial bone remodeling), and physiologic
injury response to toxic exposure. We will expand this technology to develop a distal tubule epithelial cell
model (DTEC) which will be used to explore the pathophysiologic response to oxalate microcrystals.
Studying the proximal and distal tubules in the microgravity environment of the International Space Station
presents the unique opportunity to observe accelerated disease processes (proteinuria, osteoporosis, kidney
stones), which will facilitate the discovery of factors that contribute to the development and progression of
kidney diseases that cannot be observed on a conventional time scale. Therefore, the aims of this project are:
to determine the effects of microgravity on the polarized structural aspects (eg., ion and solute transporters) of
the kidney proximal and distal tubule epithelium in a 3D microphysiological system, to determine if Vitamin D
bioactivation/homeostasis within the kidney proximal tubule is compromised in response to extended exposure
to microgravity, and to create a disease-state models of proximal tubule proteinuria and distal tubule kidney
stone formation to evaluate the harmful or adaptive modulating effects of microgravity.
A better understanding of the factors and pathways that underlie proper cellular structure and the development
and progression of kidney diseases will uncover novel therapeutic targets that can be used in the development
of pharmacologic agents that can improve the health of Space Station crewmembers as well as the health of
the general public by preventing or reversing proteinuria, osteoporosis, and kidney stones.
抽象的
肾功能障碍会导致严重的医疗状况,包括蛋白尿,骨质疏松症和
肾结石的形成。这些情况更频繁地发生,并且在机组人员中进展更快
驻扎在国际空间站。当前的近端和远端管的静态模型是
无法概括细胞功能,包括通过梅加林,维生素D代谢的蛋白质重吸收
生物活化和微晶介导的损伤反应。我们已经开发了一个微生物生理模型
使用原代细胞上皮细胞(PTEC)成功证明的近端细胞上皮细胞(PTEC)
生理细胞结构/极化,葡萄糖和药物底物的转运,无活性25-的生物活化
羟基维生素D至1α,25-二羟基维生素D(促进有益的骨重塑)和生理
对有毒暴露的伤害反应。我们将扩展这项技术以开发远端细胞上皮细胞
模型(DTEC)将用于探索对草酸盐微晶体的病理生理反应。
在国际空间站的微重力环境中研究近端和远端小管
提出了观察加速疾病过程的独特机会(蛋白尿,骨质疏松症,肾脏
石头),这将有助于发现有助于发展和发展的因素
无法在常规时间尺度上观察到的肾脏疾病。因此,该项目的目的是:
确定微重力对极化结构方面(例如离子和可溶性转运蛋白)的影响
3D微生物生理系统中的肾脏近端和远端小节上皮,以确定维生素D是否是否
肾脏近端小管内的生物活化/体内稳态,以响应延长的暴露而受到损害
进行微重力,并创建近端细胞蛋白尿和远端小节肾脏的疾病状态模型
石材形成以评估微重力的有害或自适应调节作用。
更好地理解基于适当的细胞结构和发展的因素和途径
肾脏疾病的进展将发现可用于发育的新型治疗靶标
可以改善空间站工作人员健康的药理学剂以及
公众通过预防或逆转蛋白尿,骨质疏松症和肾结石。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Himmelfarb其他文献
Jonathan Himmelfarb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Himmelfarb', 18)}}的其他基金
KPMP Kidney Mapping and Atlas Project (KMAP)
KPMP 肾脏绘图和图集项目 (KMAP)
- 批准号:
10492787 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
KPMP Kidney Mapping and Atlas Project (KMAP)
KPMP 肾脏绘图和图谱项目 (KMAP)
- 批准号:
10705740 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Safety and Efficacy of Human Clinical Trials Using Kidney-on-a-Chip Microphysiological Systems
使用芯片肾微生理系统进行人体临床试验的安全性和有效性
- 批准号:
10037553 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
Safety and Efficacy of Human Clinical Trials Using Kidney-on-a-Chip Microphysiological Systems
使用芯片肾微生理系统进行人体临床试验的安全性和有效性
- 批准号:
10671573 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
Safety and Efficacy of Human Clinical Trials Using Kidney-on-a-Chip Microphysiological Systems
使用芯片肾微生理系统进行人体临床试验的安全性和有效性
- 批准号:
10216377 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
Safety and Efficacy of Human Clinical Trials Using Kidney-on-a-Chip Microphysiological Systems
使用芯片肾微生理系统进行人体临床试验的安全性和有效性
- 批准号:
10515788 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
Safety and Efficacy of Human Clinical Trials Using Kidney-on-a-Chip Microphysiological Systems
使用芯片肾微生理系统进行人体临床试验的安全性和有效性
- 批准号:
10471014 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
A Microphysiological System for Kidney Disease Modeling and Drug Efficacy Testing
用于肾脏疾病建模和药效测试的微生理系统
- 批准号:
9757837 - 财政年份:2017
- 资助金额:
$ 38.88万 - 项目类别:
A Microphysiological System for Kidney Disease Modeling and Drug Efficacy Testing
用于肾脏疾病建模和药效测试的微生理系统
- 批准号:
9975953 - 财政年份:2017
- 资助金额:
$ 38.88万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Measuring metabolically active kidney tissue in autosomal dominant polycystic kidney disease
测量常染色体显性多囊肾病中代谢活跃的肾组织
- 批准号:
10281837 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
Elucidating the Mechanisms of Salivary Gland Dysfunction Following Gamma-Irradiation Utilizing an Experimental and Computational Approach
利用实验和计算方法阐明伽马射线照射后唾液腺功能障碍的机制
- 批准号:
10401792 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别: