Neural dynamics and adaption for brain machine interface control
脑机接口控制的神经动力学和适应
基本信息
- 批准号:9765066
- 负责人:
- 金额:$ 3.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2020-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaArtificial ArmAutomobile DrivingBehaviorBrainClinicalClinical TrialsComplexComputersCoupledDataDimensionsElectrodesFreedomGenerationsGoalsImplanted ElectrodesIndividualIntentionJoint ProsthesisJointsLearningLimb ProsthesisLimb structureLinkLiteratureMacacaMacaca mulattaMachine LearningMapsMeasuresMethodsModelingMonkeysMotorMotor CortexMovementNervous System TraumaNeurodegenerative DisordersNeuronsParalysedPatternPerformancePopulationPropertyProsthesisQuality of lifeRehabilitation deviceRoboticsSpinal CordStatistical Data InterpretationStatistical MethodsStatistical ModelsStructureSystemSystems TheoryTechniquesTechnologyTimeTrainingVisualVolitionWorkarmarm movementbrain machine interfaceclinical applicationdynamic systemexperimental studyfallshigh dimensionalityimprovedinsightmotor impairmentneural modelneural patterningneurophysiologyneuroregulationnonhuman primatepre-clinicalprosthesis controlrehearsalrelating to nervous system
项目摘要
Project Summary/Abstract
Millions of people suffer from some form of paralysis. In most of these cases the connection between the brain and
the spinal cord is damaged, however, the motor cortex is healthy and intact. Thus, for these individuals, brain-machine
interfaces (BMIs) hold significant promise for improving quality of life. BMIs decode an individual's intention to move by
utilizing statistical models of neural activity patterns recorded from the motor cortex using implanted electrode arrays. While
these methods have been encouraging in preclinical experiments and clinical trials for controlling thought-driven 2D
computer cursors, they suffer from poor performance when applied to higher degrees-of-freedom (e.g., robotic limbs), and
are not robust to the inevitable degradation of the electrode array. In order to address these clinical needs, this project starts
from the recent observation that just as some behaviors are easier to learn, some patterns of neural activity, termed neural
states, are also easier to generate. The overarching goal of this project is to elucidate if these “easy to generate” neural states
can be used to robustly control a prosthetic arm. This is a significant departure from current decoding methods, which
incorporate little to no information about the motor system, especially its ability to learn and adapt. The first major aim of
this work is to develop experiments and analysis methods in order to find these “easy to generate” neural states in the non-
human primate (i.e., rhesus monkey) motor system. Here “easy to generate” can be understood as the monkey's ability to
volitionally generate that particular neural state. The second major aim of this work is to characterize the properties of the
motor system that enable some states to be more easily generated than others. Prior work in our lab has shown that motor
cortical population activity has well-defined structure, as predicted by dynamical system theory. These dynamics cause
neural states to evolve in lawful ways through time. The work here will extend these findings by characterizing the dynamics
associated with a monkey learning to generate a neural state. Finally, the third major aim of this work is to determine if
neural states that monkeys can volitionally generate can be utilized for robust control of a prosthetic arm. The central
hypothesis of this work is that building a model that only utilizes firing patterns that can be easily generated (as determined
experimentally) will enable robust and high-performance control of a prosthetic arm. If successful, this study could have
significant clinical impact by presenting a new paradigm to enable robust control of a prosthesis.
项目总结/摘要
数百万人患有某种形式的瘫痪。在大多数情况下,大脑和大脑之间的联系
脊髓受损,但运动皮层健康完好。因此,对于这些人来说,脑机
接口(BMI)对改善生活质量具有重要意义。BMI解码个人的移动意图
利用使用植入的电极阵列从运动皮层记录的神经活动模式的统计模型。而
这些方法在临床前实验和临床试验中用于控制思维驱动的2D
计算机光标,它们在应用于更高自由度时性能较差(例如,机器人肢体),以及
对于电极阵列的不可避免的劣化并不稳健。为了满足这些临床需求,该项目开始
从最近的观察,正如一些行为更容易学习,一些神经活动的模式,称为神经
国家,也更容易产生。这个项目的首要目标是阐明这些“容易产生”的神经状态
可以用来鲁棒地控制假肢。这与当前的解码方法有很大的不同,
几乎没有关于运动系统的信息,特别是它的学习和适应能力。第一个主要目标
这项工作是发展实验和分析方法,以便在非-
人灵长类动物(即,恒河猴)运动系统。这里的“容易生成”可以理解为猴子的能力,
产生特定的神经状态。这项工作的第二个主要目的是表征
使某些状态比其他状态更容易产生的电动机系统。我们实验室的先前工作表明,
如动力系统理论所预测的,皮层群体活动具有明确的结构。这些动态导致
神经状态以合法的方式进化这里的工作将通过表征动力学来扩展这些发现
与猴子学习产生神经状态有关。最后,这项工作的第三个主要目标是确定,
猴子可以自愿产生的神经状态可以用于假肢的鲁棒控制。
这项工作的假设是,建立一个模型,只利用发射模式,可以很容易地产生(如确定
实验)将使假肢的鲁棒性和高性能控制成为可能。如果成功,这项研究可以
通过提出一种新的范例来实现对假体的鲁棒控制,从而产生显著的临床影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Causal Role of Motor Preparation during Error-Driven Learning.
错误驱动学习期间运动准备的因果作用。
- DOI:10.1016/j.neuron.2020.01.019
- 发表时间:2020
- 期刊:
- 影响因子:16.2
- 作者:Vyas,Saurabh;O'Shea,DanielJ;Ryu,StephenI;Shenoy,KrishnaV
- 通讯作者:Shenoy,KrishnaV
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saurabh Vyas其他文献
Saurabh Vyas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saurabh Vyas', 18)}}的其他基金
Cortical computations underlying planning, generating, and orchestrating complex cognitive-motor sequences
皮层计算是规划、生成和编排复杂认知运动序列的基础
- 批准号:
10349938 - 财政年份:2022
- 资助金额:
$ 3.46万 - 项目类别:
Cortical Computations Underlying Planning, Generating, and Orchestrating Complex Cognitive-Motor Sequences
规划、生成和编排复杂认知运动序列的皮层计算
- 批准号:
10551724 - 财政年份:2022
- 资助金额:
$ 3.46万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Standard Grant