Bringing real-time stress detection to scale: Development of a biosensor driven, stress detection classifier for smartwatches
大规模实现实时压力检测:为智能手表开发生物传感器驱动的压力检测分类器
基本信息
- 批准号:9891764
- 负责人:
- 金额:$ 18.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-05 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAffectAlcohol consumptionAlgorithmsArousalAutonomic nervous systemAwardAwarenessBayesian ModelingBiosensorCardiovascular systemCellular PhoneChronicClinicalClinical ResearchClinical SciencesCodeCognitiveComplementCoping BehaviorCustomDetectionDevelopmentDevicesDiseaseDisease remissionEcological momentary assessmentElectrocardiogramEngineeringEnsureEnvironmentGeneral HospitalsGoalsHealth SciencesImpairmentIndividualInterventionKnowledgeLaboratoriesLanguageLearningLifeLinkMachine LearningManuscriptsMassachusettsMeasuresMentored Patient-Oriented Research Career Development AwardMentorsMentorshipMobile Health ApplicationMonitorMorphologic artifactsMotivationNotificationParticipantPatientsPhysiologic MonitoringPhysiologicalPreparationPrincipal InvestigatorPsychophysiologyRecoveryRelapseResearchResearch PersonnelRiskRunningSensitivity and SpecificitySeriesSignal TransductionStressTargeted ResearchTechnologyTestingTimeTrainingTranslatingTranslationsUnited States National Institutes of HealthUniversitiesacute stressalcohol riskalcohol use disorderbasecareer developmentclassification algorithmclassifier algorithmclinical applicationcohortdeter alcohol usedisorder later incidence preventionearly alcohol useexperiencefitnesshealth applicationheart rate variabilityimprovedindexinginnovationmHealthmedical schoolsmedical specialtiesmodel buildingnegative affectnovelprogramsreal time monitoringreduced alcohol userelapse riskskillssmart watchsmartphone Applicationsocietal costsstress managementstress reactivitystress statestressorsymposiumtherapy developmenttime usewearable sensor technology
项目摘要
PROJECT SUMMARY/ABSTRACT
The goals of this mentored, patient-oriented, research career development award are two-fold: 1) Characterize
the autonomic nervous system correlates of stress-reactivity, both in laboratory and ambulatory contexts in
order to inform the development of a biosensor driven, stress-detection classifier algorithm that can run on
commercially available smartwatches, and 2) establish the principal investigator as an independent researcher
at Massachusetts General Hospital - Harvard Medical School. The specific aims of this research will be
accomplished through an innovative study leveraging the strengths of traditional laboratory-based,
psychophysiological research, and cutting-edge, in natura monitoring of stress and stress’ autonomic
correlates using a combination of ecological momentary assessment of affect, and ambulatory
electrocardiogram monitoring. This research will inform the development of a stress-detection algorithm that
will run on commercially available smartwatches. The clinical and health applications for real-time stress
detection are numerous, but this technology holds particular promise for individuals in early recovery from
alcohol use disorder for whom unchecked stress heightens risk for alcohol use and engagement in other
maladaptive coping behaviors. The smartwatch-embedded stress detection algorithm developed in this
research will ultimately be linked to existing smartphone-based relapse prevention apps that will prompt
patients with real-time coaching to mitigate alcohol use risk. Aims of the principal investigator’s career
development and training plan include, 1) learning fundamental principles of machine learning with an
emphasis on biosensor technologies, 2) gaining facility with Matlab programming, with an emphasis on signal
analysis and psychophysiological model building, 3) broadening expertise in cardiovascular waveform and
interval analysis with particular emphasis on artefact management, and 4) acquiring skills in the development
and application of mHealth-based clinical interventions. These goals will be achieved through a training plan
comprised of mentorship, formal coursework, seminars, conferences, and manuscript preparation. Knowledge
gained via the training plan will be augmented by the research undertaken. Drs. John Kelly, Paolo Bonato, Gari
Clifford, and Bettina Hoeppner will serve as mentors on this award, and will provide targeted expertise in
machine learning approaches, Matlab programing, artefact management, and mHealth treatment development.
Massachusetts General Hospital - Harvard Medical School provides an exceptional environment in which to
conduct this training and research. By the end of the 5-year award period, the goals are to have a working
stress-detection classifier algorithm ready for R01 testing, and for the principal investigator to be established as
an independent investigator. This award is consistent with NIH's goal of increasing and maintaining a strong
cohort of investigators to address the nation's clinical research needs.
项目概要/摘要
这个以患者为导向、以患者为导向的研究职业发展奖的目标有两个:1) 描述
在实验室和流动环境中,自主神经系统与应激反应相关
为了为生物传感器驱动的压力检测分类器算法的开发提供信息,该算法可以在
市售智能手表,以及 2) 将首席研究员确定为独立研究员
在马萨诸塞州总医院 - 哈佛医学院。这项研究的具体目标将是
通过利用传统实验室优势的创新研究来完成,
心理生理学研究,以及压力自然监测和压力自主神经的前沿研究
使用生态瞬时情感评估和动态评估相结合进行关联
心电图监测。这项研究将为压力检测算法的开发提供信息
将在市售智能手表上运行。实时压力的临床和健康应用
检测方法有很多,但这项技术对早期康复的个人特别有希望
对于患有酒精使用障碍的人来说,不受控制的压力会增加饮酒和参与其他活动的风险
适应不良的应对行为。本次开发的智能手表嵌入式压力检测算法
研究最终将与现有的基于智能手机的复发预防应用程序联系起来,这将促使
为患者提供实时指导,以降低饮酒风险。首席研究员的职业目标
开发和培训计划包括:1)学习机器学习的基本原理
重点是生物传感器技术,2) 熟悉 Matlab 编程,重点是信号
分析和心理生理学模型构建,3)扩大心血管波形和
区间分析,特别强调工件管理,以及 4) 获取开发技能
基于移动医疗的临床干预措施的应用。这些目标将通过培训计划来实现
包括指导、正式课程、研讨会、会议和手稿准备。知识
通过培训计划获得的成果将通过开展的研究得到加强。博士。约翰·凯利、保罗·博纳托、加里
Clifford 和 Bettina Hoeppner 将担任该奖项的导师,并将提供有针对性的专业知识
机器学习方法、Matlab 编程、人工制品管理和移动医疗治疗开发。
马萨诸塞州总医院 - 哈佛医学院提供了一个特殊的环境
进行此项培训和研究。到 5 年奖励期结束时,目标是建立一个可行的
压力检测分类器算法已准备好进行 R01 测试,并可将主要研究者确定为
独立调查员。该奖项与 NIH 增加和维持强大的目标是一致的。
一组研究人员来满足国家的临床研究需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID EDDIE其他文献
DAVID EDDIE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID EDDIE', 18)}}的其他基金
A pilot study of ambulatory Heart Rate Variability Biofeedback for substance use disorder
动态心率变异性生物反馈治疗物质使用障碍的初步研究
- 批准号:
10837428 - 财政年份:2022
- 资助金额:
$ 18.41万 - 项目类别:
A pilot study of ambulatory Heart Rate Variability Biofeedback for substance use disorder
动态心率变异性生物反馈治疗物质使用障碍的初步研究
- 批准号:
10670398 - 财政年份:2022
- 资助金额:
$ 18.41万 - 项目类别:
A pilot study of ambulatory Heart Rate Variability Biofeedback for substance use disorder
动态心率变异性生物反馈治疗物质使用障碍的初步研究
- 批准号:
10493863 - 财政年份:2022
- 资助金额:
$ 18.41万 - 项目类别:
Bringing real-time stress detection to scale: Development of a biosensor driven, stress detection classifier for smartwatches
大规模实现实时压力检测:为智能手表开发生物传感器驱动的压力检测分类器
- 批准号:
10183106 - 财政年份:2020
- 资助金额:
$ 18.41万 - 项目类别:
Bringing real-time stress detection to scale: Development of a biosensor driven, stress detection classifier for smartwatches
大规模实现实时压力检测:为智能手表开发生物传感器驱动的压力检测分类器
- 批准号:
10632131 - 财政年份:2020
- 资助金额:
$ 18.41万 - 项目类别:
Elucidating the role of cognitive and physiological aspects of affect in alcohol use relapse
阐明认知和生理方面的影响在酗酒复发中的作用
- 批准号:
9188860 - 财政年份:2016
- 资助金额:
$ 18.41万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.41万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.41万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.41万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.41万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.41万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.41万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.41万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.41万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.41万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.41万 - 项目类别:
Research Grant














{{item.name}}会员




