Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
基本信息
- 批准号:7784567
- 负责人:
- 金额:$ 34.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAddressAffectBostonCalibrationCaliforniaCaringCase StudyClinicalCodeComputer softwareDataDatabasesDecision MakingDevelopmentDiagnosisDiscriminationEarly DiagnosisElectronic Health RecordElectronicsEnvironmentEvaluationEventExpert SystemsFrequenciesGenerationsGoalsGoldGroupingHealthHealth Information SystemHealthcareHospitalizationHospitalsHumanImageryIndividualInterviewLaboratoriesLeadLinkMapsMasksMassachusettsMedicalMedical HistoryMedical RecordsMedicineMental DepressionMethodsModelingNatureOutcomePatient MonitoringPatientsPatternPediatric HospitalsPerformancePhysiciansProceduresProcessPublic HealthPublishingReaderRecording of previous eventsRecordsResearchResearch DesignRiskRisk EstimateRisk FactorsScreening procedureSiteSpecialistSpottingsStagingSystemTimeVisionWorkbaseclinical phenotypecomputer based statistical methodsdesignend of life careexperiencehigh riskimprovedmarkov modelmortalitynetwork modelsnext generationopen sourcepopulation healthprescription procedureprogramsprototypetrend
项目摘要
DESCRIPTION (provided by applicant):
Vast amounts of longitudinal data accumulating in electronic health information systems present an untapped opportunity to improve medical screening and diagnosis. Yet doctors typically do not have the time to thoroughly review historical records during a brief clinical encounter, and even when they do, they may find it difficult to rapidly identify long-term patterns across multiple types of data. As a result, the full potential of the electronic health record is not utilized, and conditions that are not easy to diagnose from a single clinical encounter are often missed. For example, abuse and depression may go unrecognized for years as they are masked by other acute conditions that form the basis of clinical encounters, when in retrospect, a review of the longitudinal record may show a discernable pattern. The NLM's Strategic Vision calls for a systems approach to health care that uses next generation electronic health records to facilitate patient-centric care, automated decision support, longitudinal records for patient monitoring, and generation of alerts and reminders. The goal of this project is to answer this call by realizing the full potential of longitudinal medical information to improve medical decision-making. This will be accomplished by developing Intelligent Histories - Dynamic Bayesian Network models of an individual's longitudinal medical information. Building on methods developed for population health surveillance systems, Intelligent History models will be incorporated into a personalized risk surveillance system that will proactively monitor patients' longitudinal histories for long-term risk-associated patterns. The system will present the information in a targeted, contextualized fashion to clinicians, enabling rapid identification of long-term patterns of risk. The work will be carried out in four stages: (1) Developing Intelligent Histories, Bayesian Network risk models that incorporate an individual's multi-year longitudinal coded medical information, including diagnoses, procedures, prescriptions, and laboratory results. The performance of these models will be evaluated and compared with other existing approaches; (2) Extending these models to include explicit representation of temporal trends and relationships including the development of Markov-model based Dynamic Bayesian Network models; (3) Integrating these models into a prototype personalized risk surveillance system that generates alerts and presents the clinician with a tailored view of a patient's longitudinal history. (4) Conducting a formative evaluation to determine whether the prototype system can improve clinicians' abilities to detect and estimate clinical risk. We seek to improve medical decision-making, allowing for earlier detection of clinical conditions, and facilitating a more personalized and systematic approach to medicine.
描述(由申请人提供):
电子卫生信息系统中积累的大量纵向数据为改善医疗筛查和诊断提供了一个尚未开发的机会。然而,医生通常没有时间在短暂的临床接触中彻底审查历史记录,即使他们这样做,他们也可能发现很难快速识别多种类型数据的长期模式。因此,电子健康记录的全部潜力没有得到利用,并且经常错过从单一临床遭遇中不易诊断的状况。例如,虐待和抑郁症可能多年未被识别,因为它们被形成临床遭遇基础的其他急性疾病所掩盖,当回顾时,对纵向记录的审查可能会显示出可辨别的模式。NLM的战略愿景要求采用系统方法进行医疗保健,该方法使用下一代电子健康记录来促进以患者为中心的护理、自动化决策支持、用于患者监测的纵向记录以及警报和提醒的生成。该项目的目标是通过实现纵向医疗信息的全部潜力来改善医疗决策来响应这一呼吁。这将通过开发智能历史-个人纵向医疗信息的动态贝叶斯网络模型来实现。在为人口健康监测系统开发的方法的基础上,智能历史模型将被纳入个性化风险监测系统,该系统将主动监测患者的长期风险相关模式的纵向历史。该系统将以有针对性的、情境化的方式向临床医生提供信息,从而能够快速识别长期风险模式。这项工作将分四个阶段进行:(1)开发智能病史,贝叶斯网络风险模型,其中包括个人多年的纵向编码医疗信息,包括诊断,程序,处方和实验室结果。(2)扩展这些模型,使其包括时间趋势和关系的显式表示,包括发展基于马尔可夫模型的动态贝叶斯网络模型;(三)将这些模型集成到原型个性化风险监测系统中,该系统生成警报并向临床医生呈现患者纵向的定制视图。历史(4)进行形成性评价,以确定原型系统是否可以提高临床医生检测和估计临床风险的能力。我们寻求改善医疗决策,允许更早地检测临床状况,并促进更加个性化和系统化的医学方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ben Y Reis其他文献
Harnessing the Power of Generative AI for Clinical Summaries: Perspectives From Emergency Physicians.
利用生成式人工智能的力量进行临床总结:急诊医生的观点。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:6.2
- 作者:
Y. Barak;Rebecca Wolf;R. Rozenblum;Jessica K. Creedon;Susan C. Lipsett;Todd W. Lyons;Kenneth A. Michelson;Kelsey A. Miller;Daniel Shapiro;Ben Y Reis;Andrew M Fine - 通讯作者:
Andrew M Fine
Ben Y Reis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ben Y Reis', 18)}}的其他基金
Development and validation of an electronic health record prediction tool for first-episode psychosis
首发精神病电子健康记录预测工具的开发和验证
- 批准号:
10057390 - 财政年份:2019
- 资助金额:
$ 34.96万 - 项目类别:
Development and validation of an electronic health record prediction tool for first-episode psychosis
首发精神病电子健康记录预测工具的开发和验证
- 批准号:
10305682 - 财政年份:2019
- 资助金额:
$ 34.96万 - 项目类别:
Improved multifactorial prediction of suicidal behavior through integration of multiple datasets
通过整合多个数据集改进自杀行为的多因素预测
- 批准号:
9762979 - 财政年份:2018
- 资助金额:
$ 34.96万 - 项目类别:
Integrative Methods for Improved Pharmacovigilance
改善药物警戒的综合方法
- 批准号:
8232024 - 财政年份:2010
- 资助金额:
$ 34.96万 - 项目类别:
Integrative Methods for Improved Pharmacovigilance
改善药物警戒的综合方法
- 批准号:
8055383 - 财政年份:2010
- 资助金额:
$ 34.96万 - 项目类别:
Integrative Methods for Improved Pharmacovigilance
改善药物警戒的综合方法
- 批准号:
7764278 - 财政年份:2010
- 资助金额:
$ 34.96万 - 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
- 批准号:
8065527 - 财政年份:2009
- 资助金额:
$ 34.96万 - 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
- 批准号:
8053207 - 财政年份:2009
- 资助金额:
$ 34.96万 - 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
- 批准号:
8249941 - 财政年份:2009
- 资助金额:
$ 34.96万 - 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
- 批准号:
7652734 - 财政年份:2009
- 资助金额:
$ 34.96万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 34.96万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 34.96万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 34.96万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 34.96万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 34.96万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 34.96万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 34.96万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 34.96万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 34.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 34.96万 - 项目类别:
Standard Grant