Structural Biology Studies of a Large DNA Repair Complex
大型 DNA 修复复合体的结构生物学研究
基本信息
- 批准号:9767255
- 负责人:
- 金额:$ 35.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:BiochemicalBiological ModelsBiophysicsComplementComplexDNADNA Double Strand BreakDNA RepairDiseaseDouble Strand Break RepairGenomic DNAGoalsHeartImmunologic Deficiency SyndromesIn VitroLeadLengthMalignant NeoplasmsMediatingModelingMotionMutationNMR SpectroscopyNeurodegenerative DisordersNuclear Magnetic ResonancePredispositionProcessProtein DynamicsProteinsRepair ComplexResearchResolutionRoentgen RaysRoleStructural ProteinStructureTechniquesTimeX-Ray CrystallographyYeastsbasebiophysical techniquesdevelopmental diseasedisease-causing mutationin vivointerestmacromolecular assemblyprogramsprotein complexprotein functionprotein structurerepairedstructural biologythree dimensional structure
项目摘要
Our research program revolves around understanding the relationship between structure, dynamics, and
function. We are particularly interested in understanding this relationship in large macromolecular
assemblies, which have been recalcitrant to detailed structure and dynamics studies in the past. Our
strategy is to couple high-resolution methyl-based nuclear magnetic resonance (NMR) spectroscopy,
which is capable of probing proteins and their complexes up to ~1 MDa in size, with biochemical and
biophysical techniques to better understand function. Our current focus is the universally conserved and
essential DNA double strand break (DSB) repair complex Mre11-Rad50-Nbs1 (MRN). This protein
complex is at the heart of detecting DNA DSBs and initiating the process of their repair. Several disease
mutations have been noted in MRN, which give rise to immunodeficiency, developmental and
neurodegenerative disorders, and a predisposition to certain cancers. Other sporadic mutations in Mre11
and Rad50 have been found in a number of different cancers. Bacterial and archaeal model systems,
which lack Nbs1, have been the focus of the existing body of X-ray crystallography and biochemical
studies that suggest a role for protein motions in choreographing the various functions of the Mre11-
Rad50 (MR) core complex. Yet, many questions still remain about the interplay of protein structures and
motions and how these relate to and control MR activity. Over the next five years, our goal is to determine
solution state models of key MR assemblies complete with substrate DNAs that mimic different types of
DNA DSBs and to characterize the protein dynamics that occur within these complexes. The NMR-based
studies will be complemented with a variety of in vitro biophysical and biochemical techniques to further
probe domain motions and the wide array of MR activities, as well as in vivo studies in yeast to place
these motions and activities into the context of overall DNA DSB repair. We will also extend these studies
to include disease mutations within MR, which will not only allow us to understand how these alterations
corrupt MR function and lead to disease but will also provide additional avenues for probing the structures,
dynamics, and functional relationships within this complex. Our long-term goals seek to move beyond the
core MR complex. Although the MR studies proposed herein will be performed on the simplified construct
of Rad50, which has been used in all previous x-ray crystallographic studies of MR, we aim to perform, for
the first time, similar studies using full-length Rad50. In total, our research program aims to better
understand how macromolecular assemblies use protein motions to regulate their functions, and in the
process of applying our program to MRN, we will determine the effect that large and small scale motions
have in controlling the first steps in MRN-mediated DNA DSB repair.
我们的研究计划围绕着理解结构,动力学和
功能我们特别感兴趣的是了解这种关系,在大分子
组装体,这在过去一直是详细的结构和动力学研究的障碍。我们
策略是将高分辨率甲基基核磁共振(NMR)光谱,
它能够探测蛋白质及其复合物的大小高达~1 MDa,具有生物化学和
生物物理技术,以更好地了解功能。我们目前的重点是普遍保存和
必需DNA双链断裂(DSB)修复复合物Mre 11-Rad 50-Nbs 1(MRN)。这种蛋白质
复合物是检测DNA双链断裂并启动其修复过程的核心。几种疾病
在MRN中已经注意到突变,其引起免疫缺陷、发育和
神经退行性疾病和某些癌症的易感性。Mre 11中的其他散发性突变
和Rad 50在许多不同的癌症中被发现。细菌和古细菌模型系统,
缺乏Nbs 1的晶体,一直是现有的X射线晶体学和生物化学研究的焦点。
研究表明,蛋白质运动在编排Mre 11的各种功能中发挥作用,
Rad 50(MR)核心复合物。然而,关于蛋白质结构的相互作用,
运动以及这些运动如何与MR活动相关并控制MR活动。在未来五年,我们的目标是确定
关键MR组件的溶液状态模型,其具有模拟不同类型的
DNA双链断裂,并表征这些复合物内发生的蛋白质动力学。基于NMR
研究将辅以各种体外生物物理和生物化学技术,
探针结构域运动和广泛的MR活动,以及在酵母体内的研究,
这些运动和活动的背景下,整体DNA双链断裂修复。我们还将扩展这些研究
包括MR中的疾病突变,这不仅可以让我们了解这些改变是如何发生的,
破坏MR功能并导致疾病,但也将为探测结构提供额外的途径,
动力学和功能关系。我们的长期目标是超越
核心MR复合体。尽管本文提出的MR研究将在简化的结构上进行,
Rad 50,它已被用于所有以前的X射线晶体学研究的MR,我们的目标是执行,为
第一次,类似的研究使用全长Rad 50。总的来说,我们的研究计划旨在更好地
了解大分子组装如何使用蛋白质运动来调节它们的功能,
在将我们的程序应用于MRN的过程中,我们将确定大小尺度运动的影响,
在控制MRN介导的DNA DSB修复的第一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Parker Latham其他文献
Michael Parker Latham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Parker Latham', 18)}}的其他基金
Structural Biology Studies of a Large DNA Repair Complex
大型 DNA 修复复合物的结构生物学研究
- 批准号:
10241283 - 财政年份:2018
- 资助金额:
$ 35.97万 - 项目类别:
Structural Biology Studies of a Large DNA Repair Complex
大型 DNA 修复复合物的结构生物学研究
- 批准号:
10664756 - 财政年份:2018
- 资助金额:
$ 35.97万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 35.97万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 35.97万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 35.97万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 35.97万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 35.97万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 35.97万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 35.97万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 35.97万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 35.97万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 35.97万 - 项目类别: