Signaling mechanisms that mediate anoxia-induced cellular arrest
介导缺氧诱导的细胞停滞的信号机制
基本信息
- 批准号:9765339
- 负责人:
- 金额:$ 19.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-16 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAcuteAdenosine TriphosphateAdultAnoxiaBindingBrainCell CycleCell Cycle ProgressionCellsCollaborationsConsumptionCytosolDataDependenceDevelopmentDevelopmental BiologyEmbryoEndocytosis InhibitionEnergy-Generating ResourcesEventExposure toFamily memberGenetic TranscriptionGoalsHeartHomeostasisHourHumanHypoxiaInjuryKidneyLeadLifeMediatingMetabolicMetabolismNDRG1 geneNa(+)-K(+)-Exchanging ATPaseOrganOrgan TransplantationOrganismOxidative PhosphorylationOxygenPatientsPhysiologicalPost-Translational RegulationPreventionProcessProtein FamilyProteinsProteomicsPumpRegulationResearchResearch PersonnelRoleSignal TransductionSignaling MoleculeStudy modelsTestingTissue PreservationTranslationsWorkZebrafishangiogenesisblastocystcancer cellcell cortexcell typedeprivationexperiencein vitro testingin vivoionic balancemetabolic ratemetabolomicsnovelnovel therapeuticsprostate cancer cellprotective effectprotein distributionresponsetherapeutic targettissue/cell culture
项目摘要
PROPOSAL ABSTRACT
Most organisms are highly sensitive to fluctuations in the concentration of oxygen (O2), on which they
depend to generate adenosine triphosphate (ATP), the cell’s source of energy. O2 deprivation
(anoxia) causes a reduction in oxidative phosphorylation and a corresponding decrease in ATP, which
is most acutely experienced in organs with high metabolic demand, such as the brain, heart and
kidney. However, it has been documented that some organisms can respond to low O2 with a
programmed transition into a “suspended” or hypometabolic state, characterized by a dramatic
reduction in ATP consumption via arrest of ATP-dependent processes. This condition has a protective
effect on organism viability and is reversible, allowing the organism to resume metabolism and life
once O2 is restored. Understanding how to trigger such a hypometabolic state could have dramatic
consequences for the prevention of hypoxic/ischemic injury and to promote the viability and storage of
organs for transplantation. The zebrafish represents an outstanding model for studying the regulation
of hypometabolism. Depending on the stage, embryos exposed to anoxia can arrest development for
up to 50 hours and then successfully produce viable adults once O2 is restored. The premise of this
proposal is that the identification of key signaling molecules that trigger anoxia-induced arrest in the
zebrafish embryo will further our understanding of this process and provide therapeutic targets for
protecting patients from hypoxic/ischemic injury. We hypothesize that the metabolite lactate acts as a
cellular signal for reduced O2, and triggers metabolic arrest through stabilization and translocation of
N-myc Downstream Regulated (NDRG) proteins that block ATP-demanding processes. We will reveal
the role of lactate/NDRG1 signaling in adaptation to reduced O2 by pursuing three aims: (1) Test
whether lactate/NDRG1 signaling is important for developmental arrest, (2) Investigate the role of
lactate in post-translational regulation of NDRG1, (3) Investigate the role of lactate/NDRG1
in arresting the Na+K+ATPase pump.
提案摘要
大多数生物体对氧气(O2)浓度的波动高度敏感,
依赖于产生三磷酸腺苷(ATP),细胞的能量来源。缺氧
(缺氧)导致氧化磷酸化的减少和ATP的相应减少,
在具有高代谢需求的器官中,如大脑、心脏和
肾然而,已经有文献证明,一些生物体可以对低O2做出反应,
程序性转变为“暂停”或低代谢状态,其特征在于
通过抑制ATP依赖性过程减少ATP消耗。这种情况具有保护性
对生物体活力的影响是可逆的,允许生物体恢复新陈代谢和生命
一旦氧气恢复了解如何触发这种低代谢状态可能会有戏剧性的
预防缺氧/缺血性损伤的后果,并促进细胞的活力和储存,
器官移植。斑马鱼代表了一个杰出的模型,用于研究
低代谢根据不同的阶段,暴露于缺氧的胚胎可以阻止发育,
长达50小时,然后一旦氧气恢复,就能成功生产出可存活的成虫。此前提
建议是,识别触发缺氧诱导的心脏骤停的关键信号分子,
斑马鱼胚胎将进一步加深我们对这一过程的理解,并为人类提供治疗靶点。
保护患者免受缺氧/缺血性损伤。我们假设代谢物乳酸作为一种
减少O2的细胞信号,并通过稳定和转运
N-myc下游调节(NDRG)蛋白质,阻止ATP需求过程。我们就会揭开
乳酸/NDRG 1信号传导在适应减少的O2中的作用,通过追求三个目标:(1)测试
乳酸/NDRG 1信号传导是否对发育停滞很重要,(2)研究乳酸/NDRG 1信号传导的作用。
乳酸在NDRG 1翻译后调控中的作用;(3)探讨乳酸/NDRG 1在NDRG 1翻译后调控中的作用
抑制了Na+K+ ATP酶的泵。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Melissa Brewster其他文献
Rachel Melissa Brewster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Melissa Brewster', 18)}}的其他基金
The reverse hingepoint: a novel, essential feature of neurulation
反向铰点:神经系统的一个新颖的基本特征
- 批准号:
10373081 - 财政年份:2021
- 资助金额:
$ 19.31万 - 项目类别:
The reverse hingepoint: a novel, essential feature of neurulation
反向铰点:神经系统的一个新颖的基本特征
- 批准号:
10217527 - 财政年份:2021
- 资助金额:
$ 19.31万 - 项目类别:
Cellular and Molecular Analysis of the Role of Inositol in Neurulation
肌醇在神经形成中作用的细胞和分子分析
- 批准号:
8835126 - 财政年份:2014
- 资助金额:
$ 19.31万 - 项目类别:
Cellular and Molecular Analysis of the Role of Inositol in Neurulation
肌醇在神经形成中作用的细胞和分子分析
- 批准号:
8701777 - 财政年份:2014
- 资助金额:
$ 19.31万 - 项目类别:
Regulation of cell polarity during neurulation
神经形成过程中细胞极性的调节
- 批准号:
8106445 - 财政年份:2009
- 资助金额:
$ 19.31万 - 项目类别:
Regulation of cell polarity during neurulation
神经形成过程中细胞极性的调节
- 批准号:
7934693 - 财政年份:2009
- 资助金额:
$ 19.31万 - 项目类别:
Regulation of cell polarity during neurulation
神经形成过程中细胞极性的调节
- 批准号:
8212950 - 财政年份:2009
- 资助金额:
$ 19.31万 - 项目类别:
Regulation of cell polarity during neurulation
神经形成过程中细胞极性的调节
- 批准号:
8518374 - 财政年份:2009
- 资助金额:
$ 19.31万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 19.31万 - 项目类别:
Standard Grant