The reverse hingepoint: a novel, essential feature of neurulation

反向铰点:神经系统的一个新颖的基本特征

基本信息

项目摘要

Abstract Neural tube defects (NTDs) are the second most common structural birth defect, yet despite their high frequency, the fundamental mechanisms that shape the neural tube are still poorly understood. During neurulation, the neural plate bends and folds in a biphasic manner around a medial and bi-lateral hingepoints, bringing the neural folds in close apposition and leading to their fusion, which completes neural tube formation. The discovery of the medial hingepoint was pivotal to the field, as it not only provided a mechanistic explanation for how the flat neural plate initially bends into a V shape, but it also led to the identification of several causative mutations in patients with NTDs. In contrast to the central region of the neural plate, the edges of this epithelial layer fold in the opposite direction to shape the neural folds. It stands to reason that this process would involve a reverse change in cell shape (reverse hingepoint or RHP) and preliminary data confirms this prediction, however a molecular understand of this process is lacking. We propose to test the central hypothesis that RHP formation is driven by recruitment of contractile machinery to the basal pole of neural fold cells, downstream of spatial information conveyed by forebrain-specific transcription factors. In aim 1 we will investigate the molecular mechanisms that shape RHP cells and in aim 2 we will examine how regional identity conveyed by forebrain-specific transcription factors species where RHPs form. Upon completion of the proposed studies, we will understand key cellular and molecular mechanisms that mediate RHP formation and have filled an important gap in our basic knowledge of neurulation. These studies will pave the way towards identification of novel NTD genetic risk factors by providing a developmental framework for functional validation of human variants in candidate genes such as emx2 and integrin b1.
摘要 神经管缺陷(NTD)是第二种最常见的结构性出生缺陷,尽管其发病率很高 频率,形成神经管的基本机制仍然知之甚少。在.期间 神经形成时,神经板围绕内侧和两侧以双相方式弯曲和折叠。 铰点,使神经折叠紧密对位,并导致它们的融合,从而完成 神经管的形成。内侧铰点的发现对这一领域至关重要,因为它不仅 为扁平神经板最初如何弯曲成V形提供了一个机械解释,但它 也导致在NTDS患者中发现了几个致病突变。与之相对的是 神经板的中心区域,该上皮层的边缘以相反的方向折叠 塑造神经皱褶。顺理成章地,这一过程将涉及细胞的反向变化 形状(反向铰点或RHP)和初步数据证实了这一预测,但分子 对这一过程缺乏了解。我们建议检验RHP形成的中心假设 是由收缩机械重新聚集到神经皱折细胞的基极,在 前脑特异转录因子传递的空间信息。在目标1中,我们将调查 塑造RHP细胞的分子机制,在目标2中,我们将研究区域认同如何 由形成RHP的前脑特异转录因子物种传递。 在完成拟议的研究后,我们将了解关键的细胞和分子机制。 这调节了RHP的形成,并填补了我们对神经形成基础知识的一个重要空白。 这些研究将为识别新的NTD遗传风险因素铺平道路,提供一种 候选基因中人类变异功能验证的发展框架 Emx2和整合素b1。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Melissa Brewster其他文献

Rachel Melissa Brewster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Melissa Brewster', 18)}}的其他基金

G-RISE at UMBC
UMBC 的 G-RISE
  • 批准号:
    10360090
  • 财政年份:
    2022
  • 资助金额:
    $ 22.59万
  • 项目类别:
G-RISE at UMBC
UMBC 的 G-RISE
  • 批准号:
    10609391
  • 财政年份:
    2022
  • 资助金额:
    $ 22.59万
  • 项目类别:
The reverse hingepoint: a novel, essential feature of neurulation
反向铰点:神经系统的一个新颖的基本特征
  • 批准号:
    10373081
  • 财政年份:
    2021
  • 资助金额:
    $ 22.59万
  • 项目类别:
Signaling mechanisms that mediate anoxia-induced cellular arrest
介导缺氧诱导的细胞停滞的信号机制
  • 批准号:
    9765339
  • 财政年份:
    2018
  • 资助金额:
    $ 22.59万
  • 项目类别:
Cellular and Molecular Analysis of the Role of Inositol in Neurulation
肌醇在神经形成中作用的细胞和分子分析
  • 批准号:
    8835126
  • 财政年份:
    2014
  • 资助金额:
    $ 22.59万
  • 项目类别:
Cellular and Molecular Analysis of the Role of Inositol in Neurulation
肌醇在神经形成中作用的细胞和分子分析
  • 批准号:
    8701777
  • 财政年份:
    2014
  • 资助金额:
    $ 22.59万
  • 项目类别:
Regulation of cell polarity during neurulation
神经形成过程中细胞极性的调节
  • 批准号:
    8106445
  • 财政年份:
    2009
  • 资助金额:
    $ 22.59万
  • 项目类别:
Regulation of cell polarity during neurulation
神经形成过程中细胞极性的调节
  • 批准号:
    7934693
  • 财政年份:
    2009
  • 资助金额:
    $ 22.59万
  • 项目类别:
Regulation of cell polarity during neurulation
神经形成过程中细胞极性的调节
  • 批准号:
    8212950
  • 财政年份:
    2009
  • 资助金额:
    $ 22.59万
  • 项目类别:
Regulation of cell polarity during neurulation
神经形成过程中细胞极性的调节
  • 批准号:
    8307404
  • 财政年份:
    2009
  • 资助金额:
    $ 22.59万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 22.59万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 22.59万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 22.59万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 22.59万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 22.59万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 22.59万
  • 项目类别:
    Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 22.59万
  • 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 22.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 22.59万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 22.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了