Advancing and calibrating anisotropic diffusion MR imaging brain connectome with Taxon brain network diffusion phantoms
使用 Taxon 脑网络扩散模型推进和校准各向异性扩散 MR 成像脑连接组
基本信息
- 批准号:9893037
- 负责人:
- 金额:$ 62.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAlgorithmsAnatomyAnimalsAxonBiophysicsBrainBrain imagingCaliberCalibrationClinicalCommunitiesComputer softwareCorpus CallosumDataData SetDepartment of DefenseDiffuseDiffusionDiffusion Magnetic Resonance ImagingDimensionsDiseaseElectron MicroscopeEquipmentEyeFiberGeometryGoalsGovernmentHeatingHistologyHumanImageImaging PhantomsIndustrializationLaboratoriesLight MicroscopeLiquid substanceMRI ScansMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsModelingMonitorNanotubesNeurodegenerative DisordersOpticsOxygenPathologyPhasePhysiologic pulsePolymersProductionPublicationsPublishingQuality ControlRadiology SpecialtyReportingReproducibilityResearchResearch PersonnelRouteRunningSamplingScanningScoring MethodShipsSiteSpeedSpinal CordStructureSystemTaxonTechnologyTemperatureTestingTextilesTimeTime Series AnalysisTissuesTracerTraumatic Brain InjuryTubeUnited States National Institutes of HealthVariantVendorWaterbasebrain tractclinically significantconnectomecostdensitydevelopmental diseaseeconomic costhuman tissueimprovedinstrumentmicroCTmillimeternanometernanoscalenetwork modelsopen datapathology imagingprogramsquality assurancesuccesstractographytumorwhite matter
项目摘要
There is a critical gap in the reliability of anisotropic diffusion magnetic resonance imaging (AdMRI). This gap can be
filled by using a ground truth measurement capability that allows for the necessary parametric control of water filled
geometries of tubes at the micron scale that can produce paths representative of the millions of axons across centimeters in
brain tract trajectories. Diffusion Tensor Imaging (DTI) publications report clinically significant systematic error that
confounds accurate quantitative assessments across instruments and time. Reference phantoms that provide exact error
metrics will advance MRI biophysics science and clinical quantitative accuracy. Correction algorithms using reference data
can reduce systematic measurement error, enabling accurate reproducible measurement and provide cross scanner norms
for AdMRI pathology. This project will deliver the first viable AdMRI phantom “ground truth” using ‘Taxons™’ (textile
axon shaped nanotubes), invented by this team, and apply advanced bi-component polymer nanoscale production methods
to create structures matched to human tissue histology. In doing this we will deliver axon scale taxons at 800 nanometer
diameter, with a packing density of one million taxons per mm2, matched to actual human corpus callosum axon
measurements. In Phase I we proposed and delivered taxons with 12 micron inner diameter tubes with a packing density of
1241 per mm2 that could be filled with water and produce FA measurement in the human tissue range. We actually “over-
delivered”, exceeding a packing density of 1,000,000 per mm2 covering the human axonal tissue range. We can now
precisely parametrically control the diameters, packing density, restricted/hindered, and isotropic water fractions to test and
improve leading compartmental models of diffusion. We created a fasciculus routing machine that can, at viable cost, create
human scale fasciculus routes matched to human tissue, such as the optic system eye to LGN, of 20 million routed taxons.
The 1 to 1 scale taxonal network phantoms quantify dMRI measurement accuracy for each taxon path with 100 micron path
precision along the trajectory. We scanned the phase I phantoms at ten sites. We established in empirical studies that there
is substantial systematic, cross instrument and measurement error (e.g., 5x the TBI effect size), that the error is stable, and
can be corrected for (removed 94% of systematic error). Phase II of this project will: 1) provide the first AdMRI phantom
for ground truth measurement to quantify dMRI biophysics, spatial homogeneity, and routing precision; 2) provide fully
automated quantification of accuracy and repeatability of measurement; 3) assess AdMRI precision of 20+ sites, quantifying
measurement error at 1.5, 3, 7, 9.4 and 14T field strength; and4) develop a set of routing phantoms (Eye>LGN> V1, spinal
cord and cortical tracts). These phantoms and/or subcomponents will be measured with non-MRI methods (confocal &
electron microscope) using NIST traceable measurements. Researchers and center directors involved in Phase I scanning
and reviewing of the results were very positive, with 30+ sites offering free scanning time to use the phantom, and to utilize
the resulting quality assurance reports. Radiology has had phantom based pivotal successes (i.e., CT Hounsfield phantoms
in the 1990s). This project will deliver a quantitative AdMRI phantom, enabling MRI metrics to become accurate across
vendors and time implementing quantitative quality assurance (QQA).
各向异性扩散磁共振成像(AdMRI)的可靠性存在一个关键缺陷。这个差距可以是
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony P Zuccolotto其他文献
Anthony P Zuccolotto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony P Zuccolotto', 18)}}的其他基金
Advancing and calibrating anisotropic diffusion MR imaging brain connectome with Taxon brain network diffusion phantoms
使用 Taxon 脑网络扩散模型推进和校准各向异性扩散 MR 成像脑连接组
- 批准号:
9410059 - 财政年份:2017
- 资助金额:
$ 62.15万 - 项目类别:
Show-N-Tell: Computerized Assessment of Pain in Children
Show-N-Tell:儿童疼痛的计算机化评估
- 批准号:
7612475 - 财政年份:2009
- 资助金额:
$ 62.15万 - 项目类别:
Screening for Medication IQ and Managing Medication
药物智商筛查和药物管理
- 批准号:
7054172 - 财政年份:2006
- 资助金额:
$ 62.15万 - 项目类别:
Managing Complexity in Psychology Experiment Generation
管理心理学实验生成中的复杂性
- 批准号:
7230534 - 财政年份:2004
- 资助金额:
$ 62.15万 - 项目类别:
Managing Complexity in Psychology Experiment Generation
管理心理学实验生成中的复杂性
- 批准号:
7055089 - 财政年份:2004
- 资助金额:
$ 62.15万 - 项目类别:
Managing Complexity in Psychology Experiment Generation
管理心理学实验生成中的复杂性
- 批准号:
6833699 - 财政年份:2004
- 资助金额:
$ 62.15万 - 项目类别:
Virtual Reality and Functional MRI to Study Drug Craving
虚拟现实和功能性 MRI 来研究药物渴望
- 批准号:
7407663 - 财政年份:2002
- 资助金额:
$ 62.15万 - 项目类别:
BEHAVIORAL SOFTWARE LABORATORY--FROM PEARL TO E-PRIME
行为软件实验室——从 PEARL 到 E-PRIME
- 批准号:
2714278 - 财政年份:1997
- 资助金额:
$ 62.15万 - 项目类别:
BEHAVIORAL SOFTWARE LABORATORY--FROM PEARL TO E-PRIME
行为软件实验室——从 PEARL 到 E-PRIME
- 批准号:
2890904 - 财政年份:1997
- 资助金额:
$ 62.15万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 62.15万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 62.15万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 62.15万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 62.15万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 62.15万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 62.15万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 62.15万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 62.15万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 62.15万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 62.15万 - 项目类别:
Continuing Grant