7T Neurosurgical Mapping Protocol for Endoscopic Resection of Skull Base Tumors
颅底肿瘤内镜切除的 7T 神经外科标测方案
基本信息
- 批准号:9893822
- 负责人:
- 金额:$ 38.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-13 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnatomyAngiographyBlood VesselsBrainClinicalComplexCoupledCranial NervesCraniopharyngiomaCraniotomyDecision MakingDetectionDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDiseaseEvaluationExcisionFaceGoldHemorrhageImageImage AnalysisImaging TechniquesInjuryIntracranial NeoplasmsIntuitionKnowledgeLength of StayLesionLocationMagnetic Resonance ImagingMissionModernizationMorbidity - disease rateMorphologic artifactsNerveNeurosurgeonNeurosurgical ProceduresNoiseOperating RoomsOperative Surgical ProceduresOptic NerveOpticsOutcomePatient SelectionPatient-Focused OutcomesPatientsPerformancePhysiologic pulsePituitary GlandPituitary Gland AdenomaPostoperative PeriodProceduresProtocols documentationPublic HealthQuantitative EvaluationsResearchResolutionRouteSafetyScanningSignal TransductionSinusSkinSkull Base NeoplasmsStructureSurgeonSurgical FlapsSurgical incisionsTechniquesTimeTraumaTumor PathologyUnited States National Institutes of HealthVisualizationWorkanatomic imagingbioimagingcancer imagingface bone structurehealthy volunteerimage guidedimaging modalityimprovedinnovationmagnetic fieldmeningiomaminimally invasivemortalitynervous system disorderneurosurgeryneurovascularnovelpatient safetypreventpublic health relevanceradio frequencyradiologistsecondary analysisskull basesuccesssurgical risktooltransmission processtumorvolunteer
项目摘要
DESCRIPTION (provided by applicant): Skull base tumors pose some of the greatest challenges in neurosurgery due to their complex anatomical location and frequent intricate involvement of adjacent neurovascular and optic structures. Endoscopic endonasal surgery (EES) is the most effective, minimally invasive approach to skull base tumor removal. However, the safety and applicability of the procedure is highly dependent on accurate and detailed delineation of tumor anatomy and adjacent or encased vessels and cranial nerves. There is a critical need to bridge the gap between advanced imaging techniques and image guidance in the modern operating room. The overall objective in this application is to demonstrate that optimized high resolution 7T magnetic resonance imaging (MRI) is the precise tool required to provide critical preoperative information to enable improved planning and more confident intraoperative decision-making for EES of skull base lesions. Our central hypothesis is that the information added by 7T scans will enhance surgical planning, shorten operative time, and increase confidence of intraoperative decision making when compared to the gold standard preoperative imaging. Specifically, the aims of this proposal are: 1) To develop a comprehensive 7T imaging protocol for pre- and intra-operative guidance for EES of skull base tumors and 2) to apply the developed 7T imaging protocol to surgical planning and guidance for a set of 40 patients. Under the first specific aim, we will integrate novel adiabatic RF pulses int anatomical imaging sequences to improve image quality, maximize SNR and anatomical coverage. We will combine the newly developed anatomical and diffusion MRI sequences with the existing robust TOF sequence to generate a 7T protocol targeted at visualization of cranial nerves (especially optic structures), tumor anatomy and vasculature and to validate the performance of this protocol in healthy volunteers. Under Specific Aim 2, the optimized 7T imaging protocol will be used to scan 40 patients with skull-base tumors, and the results will be compared with gold-standard 3T MRI images in 40 control patients with tumors matched by type, size, and location. The 7T images will be utilized for neurosurgical planning and will be imported into the image guidance platform to aid with intraoperative decision making and compared to controls. The innovation of this approach lies in the first application of a comprehensive 7T imaging protocol for accurate and safe neurosurgical planning, thereby bridging the gap between advanced MRI and modern surgical techniques. Our optimized techniques will utilize novel adiabatic RF pulses in 7T MRI sequences with significantly improved performance and reliability. This work is significant because the proposed 7T imaging techniques are addressing the critical need of providing precise and detailed anatomical imaging to the surgeon preoperatively, allowing for better patient selection, planning of approach, and intraoperative decision making, all of which have a high impact on patient safety and clinical outcome. This will ultimately improve the quality of neurosurgical procedures, improving management and treatment of a wide range of neurological diseases.
描述(由申请人提供):颅底肿瘤由于其复杂的解剖位置和邻近神经血管和视神经结构的频繁复杂受累,在神经外科中构成了一些最大的挑战。鼻内窥镜手术(EES)是颅底肿瘤切除的最有效、最微创的方法。然而,该手术的安全性和适用性高度依赖于肿瘤解剖结构和邻近或被包裹的血管和颅神经的准确和详细的描绘。在现代手术室中,迫切需要弥合先进成像技术与图像引导之间的差距。本申请的总体目标是证明优化的高分辨率7T磁共振成像(MRI)是提供关键术前信息所需的精确工具,以改善颅底病变EES的计划和更自信的术中决策。我们的中心假设是,与金标准术前成像相比,7T扫描增加的信息将增强手术计划,缩短手术时间,并增加术中决策的信心。具体而言,该提案的目的是:1)开发一种全面的7T成像方案,用于颅底肿瘤EES的术前和术中指导,2)将开发的7T成像方案应用于一组40例患者的手术计划和指导。在第一个特定目标下,我们将在解剖成像序列中集成新的绝热RF脉冲,以提高图像质量,最大限度地提高SNR和解剖覆盖范围。我们将联合收割机将新开发的解剖和弥散MRI序列与现有的稳健TOF序列相结合,以生成针对颅神经(尤其是视神经结构)、肿瘤解剖和血管可视化的7T方案,并在健康志愿者中验证该方案的性能。在特定目标2下,将使用优化的7T成像方案扫描40例颅底肿瘤患者,并将结果与40例对照患者的金标准3T MRI图像进行比较,这些患者的肿瘤类型、大小和位置均匹配。7T图像将用于神经外科计划,并将其导入图像引导平台,以辅助术中决策,并与对照品进行比较。该方法的创新之处在于首次应用全面的7T成像方案进行准确、安全的神经外科规划,从而弥合了先进MRI与现代手术技术之间的差距。我们的优化技术将在7T MRI序列中利用新型绝热RF脉冲,显著提高性能和可靠性。这项工作意义重大,因为所提出的7T成像技术解决了术前向外科医生提供精确和详细解剖成像的关键需求,允许更好的患者选择、入路规划和术中决策,所有这些都对患者安全性和临床结局有很大影响。这将最终提高神经外科手术的质量,改善各种神经系统疾病的管理和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Priti Balchandani其他文献
Priti Balchandani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Priti Balchandani', 18)}}的其他基金
Gut-brain axis in Alzheimer's disease: translational 7T MRI markers and underlying mechanisms
阿尔茨海默病中的肠脑轴:转化 7T MRI 标记物和潜在机制
- 批准号:
10901013 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
Use of 7T multimodal imaging to detect brain changes associated with light therapy in persons with mild cognitive impairment and mild Alzheimer's Disease
使用 7T 多模态成像检测轻度认知障碍和轻度阿尔茨海默病患者与光疗相关的大脑变化
- 批准号:
10673010 - 财政年份:2022
- 资助金额:
$ 38.77万 - 项目类别:
Visualizing trigeminal neuralgia at 7 Tesla: Advancing etiological understanding and improving future clinical imaging protocols
7 特斯拉可视化三叉神经痛:促进病因学理解并改进未来的临床成像方案
- 批准号:
10667246 - 财政年份:2022
- 资助金额:
$ 38.77万 - 项目类别:
Use of 7T multimodal imaging to detect brain changes associated with light therapy in persons with mild cognitive impairment and mild Alzheimer's Disease
使用 7T 多模态成像检测轻度认知障碍和轻度阿尔茨海默病患者与光疗相关的大脑变化
- 批准号:
10539558 - 财政年份:2022
- 资助金额:
$ 38.77万 - 项目类别:
7T Neurosurgical Mapping Protocol for Endoscopic Resection of Skull Base Tumors
颅底肿瘤内镜切除的 7T 神经外科标测方案
- 批准号:
10175768 - 财政年份:2020
- 资助金额:
$ 38.77万 - 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
- 批准号:
10535458 - 财政年份:2019
- 资助金额:
$ 38.77万 - 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
- 批准号:
10685147 - 财政年份:2019
- 资助金额:
$ 38.77万 - 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
- 批准号:
9894859 - 财政年份:2019
- 资助金额:
$ 38.77万 - 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
- 批准号:
10318599 - 财政年份:2019
- 资助金额:
$ 38.77万 - 项目类别:
7T Neurosurgical Mapping Protocol for Endoscopic Resection of Skull Base Tumors
颅底肿瘤内镜切除的 7T 神经外科标测方案
- 批准号:
9259952 - 财政年份:2016
- 资助金额:
$ 38.77万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 38.77万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 38.77万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
Studentship