Visualizing trigeminal neuralgia at 7 Tesla: Advancing etiological understanding and improving future clinical imaging protocols
7 特斯拉可视化三叉神经痛:促进病因学理解并改进未来的临床成像方案
基本信息
- 批准号:10667246
- 负责人:
- 金额:$ 53.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-06 至 2024-05-05
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyAreaAutomobile DrivingBlood VesselsBrainBrain StemBrain regionCerebral cortexCerebrumChronicClassificationClinicalCranial NervesDataDemyelinationsDevelopmentDevicesDiagnosisDiffusionDiseaseEsthesiaEtiologyEvaluationFaceFacial PainFunctional ImagingFunctional disorderFutureHourImageImage EnhancementImaging TechniquesIncidenceInfarctionInflammatoryInjuryLeadLengthLesionLinkMRI ScansMagnetic Resonance ImagingMeasurementMeasuresMethodsMultimodal ImagingMultiple SclerosisNerveNeuropsychologyNoiseOperative Surgical ProceduresPainPain intensityPathway AnalysisPathway interactionsPatientsPersonsPharmacologyPhysiologic pulsePlant RootsProspective StudiesProtocols documentationPsyche structureRecurrent painResolutionScanningSensitivity and SpecificitySensorySensory ThresholdsShockSideSignal TransductionSomatosensory CortexStructureStructure of trigeminal ganglionStructure of trigeminal nerve spinal tract nucleusTechniquesTestingThalamic structureTranslationsTreatment outcomeTrigeminal NeuralgiaTrigeminal SystemTrigeminal nerve structurebasebrain abnormalitiesclinical applicationclinical imagingclinically significantconnectomeeffective therapyexperiencegraph theorygray matterimaging biomarkerimaging modalityimprovedmagnetic fieldmembermultimodal datamultimodalityneurovascularnovelpain sensationradio frequencyside effectstandard of caretargeted treatmenttractographytumorwhite matterwireless
项目摘要
Project Summary
Trigeminal Neuralgia (TN) is one of the most painful disorders ever identified and affects 4.3 out of every
100,000 people in the US. In its most typical form, it causes brief attacks of intense shock-like pain on one side
of the face. Although it is known to be associated with the trigeminal or 5th cranial nerve, its overall etiology
remains poorly understood. A multitude of pharmacological and surgical methods have been used to treat
TN, with varying levels of long-term efficacy, but treatment remains challenging given that TN pain may be
caused by any of a myriad of underlying abnormalities that may not always be identifiable using current
clinical workups. Clinically, magnetic resonance imaging (MRI) is used to detect neurovascular
compression (NVC), conventionally understood to be a main cause of TN, and to rule out other potential
etiologies such as lesions or multiple sclerosis. However, pain eventually recurs in nearly half of patients whose
NVC was treated surgically, and NVC is often identified in people who do not have TN. Although current MRI
protocols are important in the pre-surgical assessment of NVC, they likely lack the resolution, quantitative
accuracy, and scope required to simultaneously interrogate the entire trigeminal sensory pathway, as well as
the brain networks associated with the sensation, evaluation, and modulation of pain that may also contribute to
TN. There remains a critical unmet need to comprehensively study the regions and networks implicated in TN
and reliably and accurately identify the true cause of pain in TN patients. MRI at ultrahigh magnetic fields such
as 7 Tesla (7T) provides increased signal to noise ratio, which yields images with exquisite resolution that can
elucidate subtle anatomical, vascular, microstructural, and functional alterations in unprecedented detail.
Therefore, we will perform a systematic prospective study of TN patients (half with identified NVC and half
idiopathic) and matched healthy controls using a state-of-the-art, TN-specific, multimodal 7T MRI protocol
composed of high-resolution structural, vascular, diffusion, and functional imaging sequences. We propose
three aims directed towards our central hypothesis: 1) To develop new imaging techniques to better visualize
all possible brain regions implicated in TN; 2) To perform qualitative and quantitative analysis of 7T
multimodal images to characterize the structural integrity of the trigeminal sensory pathway along its entire
length from the trigeminal ganglion to the primary somatosensory cortex; 3) To perform whole-brain structural
and functional network analyses to reveal abnormalities in networks associated with pain sensation and
modulation in TN patients; and 4) To evaluate translation of our 7T findings to 3 Tesla clinical scanners.
Successful completion of this study should yield imaging markers that are tightly linked to the pathophysiology
of TN, and could lead to a more complete understanding of TN, ultimately resulting in more targeted and
effective treatments for this painful affliction.
项目概要
三叉神经痛 (TN) 是迄今为止发现的最痛苦的疾病之一,影响着每人中的 4.3 人
美国有10万人。最典型的形式是,它会导致一侧出现短暂的剧烈休克样疼痛
的脸。尽管已知它与三叉神经或第五脑神经有关,但其总体病因学
仍然知之甚少。多种药物和手术方法已被用于治疗
TN 具有不同程度的长期疗效,但考虑到 TN 疼痛可能会影响治疗,治疗仍然具有挑战性
由无数潜在的异常现象引起,这些异常现象可能并不总是可以用当前的方法来识别
临床检查。临床上,磁共振成像(MRI)用于检测神经血管
压缩(NVC),传统上被认为是 TN 的主要原因,并排除其他潜在的
病因,例如病变或多发性硬化症。然而,近一半的患者最终会再次出现疼痛
NVC 需接受手术治疗,而 NVC 通常在没有 TN 的人群中被发现。虽然目前的 MRI
方案在 NVC 的术前评估中很重要,但它们可能缺乏分辨率、定量
同时询问整个三叉神经感觉通路所需的准确性和范围,以及
与疼痛的感觉、评估和调节相关的大脑网络,也可能有助于
田纳西州。全面研究 TN 涉及的区域和网络仍然是一个未得到满足的关键需求
可靠、准确地识别 TN 患者疼痛的真正原因。超高磁场下的 MRI
因为 7 Tesla (7T) 提供了更高的信噪比,从而产生具有精美分辨率的图像,可以
以前所未有的细节阐明微妙的解剖学、血管、微观结构和功能变化。
因此,我们将对 TN 患者进行系统的前瞻性研究(一半已识别出 NVC,一半已确定)
使用最先进的 TN 特异性多模态 7T MRI 协议进行特发性)和匹配的健康对照
由高分辨率结构、血管、扩散和功能成像序列组成。我们建议
我们的中心假设有三个目标:1)开发新的成像技术以更好地可视化
所有可能与 TN 相关的大脑区域; 2) 对7T进行定性和定量分析
多模态图像来表征三叉神经感觉通路沿其整个结构的完整性
从三叉神经节到初级体感皮层的长度; 3)进行全脑结构
和功能网络分析,以揭示与疼痛感觉和相关网络的异常
TN 患者的调节; 4) 评估将我们的 7T 研究结果转化为 3 台 Tesla 临床扫描仪。
这项研究的成功完成应该产生与病理生理学紧密相关的成像标记物
TN,并可能导致对 TN 的更全面的了解,最终导致更有针对性和
有效治疗这种痛苦的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Priti Balchandani其他文献
Priti Balchandani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Priti Balchandani', 18)}}的其他基金
Gut-brain axis in Alzheimer's disease: translational 7T MRI markers and underlying mechanisms
阿尔茨海默病中的肠脑轴:转化 7T MRI 标记物和潜在机制
- 批准号:
10901013 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
Use of 7T multimodal imaging to detect brain changes associated with light therapy in persons with mild cognitive impairment and mild Alzheimer's Disease
使用 7T 多模态成像检测轻度认知障碍和轻度阿尔茨海默病患者与光疗相关的大脑变化
- 批准号:
10673010 - 财政年份:2022
- 资助金额:
$ 53.21万 - 项目类别:
Use of 7T multimodal imaging to detect brain changes associated with light therapy in persons with mild cognitive impairment and mild Alzheimer's Disease
使用 7T 多模态成像检测轻度认知障碍和轻度阿尔茨海默病患者与光疗相关的大脑变化
- 批准号:
10539558 - 财政年份:2022
- 资助金额:
$ 53.21万 - 项目类别:
7T Neurosurgical Mapping Protocol for Endoscopic Resection of Skull Base Tumors
颅底肿瘤内镜切除的 7T 神经外科标测方案
- 批准号:
10175768 - 财政年份:2020
- 资助金额:
$ 53.21万 - 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
- 批准号:
10535458 - 财政年份:2019
- 资助金额:
$ 53.21万 - 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
- 批准号:
10685147 - 财政年份:2019
- 资助金额:
$ 53.21万 - 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
- 批准号:
9894859 - 财政年份:2019
- 资助金额:
$ 53.21万 - 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
- 批准号:
10318599 - 财政年份:2019
- 资助金额:
$ 53.21万 - 项目类别:
7T Neurosurgical Mapping Protocol for Endoscopic Resection of Skull Base Tumors
颅底肿瘤内镜切除的 7T 神经外科标测方案
- 批准号:
9259952 - 财政年份:2016
- 资助金额:
$ 53.21万 - 项目类别:
7T Neurosurgical Mapping Protocol for Endoscopic Resection of Skull Base Tumors
颅底肿瘤内镜切除的 7T 神经外科标测方案
- 批准号:
9893822 - 财政年份:2016
- 资助金额:
$ 53.21万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 53.21万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 53.21万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 53.21万 - 项目类别:
Studentship














{{item.name}}会员




