A predictive model of mRNA stability and translation for variant interpretation and mRNA therapeutics

用于变异解释和 mRNA 治疗的 mRNA 稳定性和翻译的预测模型

基本信息

  • 批准号:
    9894822
  • 负责人:
  • 金额:
    $ 47.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-05 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

The leading and trailing untranslated regions (UTRs) of an mRNA, along with the coding sequence (CDS), control protein production by modulating translation and mRNA stability. However, although we have identified a vast number of regulatory features in these regions, we are still far from being able to predict, for example, whether and how a sequence variant affects the levels of protein being made. Here, we propose to combine high-throughput experimental characterization of protein expression in synthetic libraries with machine learning to create predictive models of translation and mRNA stability, addressing an urgent need. Recent progress in machine vision, voice recognition and other fields of computer science has been driven by the availability of enormous data sets on which to train models. Machine learning approaches have also had remarkable impact in biology, but biological data sets often are comparatively small, limiting the quality of models that can be learned. For example, there are only around 20,000 genes in the human genome, a restrictively small set of examples for training a predictive model that captures the full extent of the genome’s “regulatory code.” In this proposal, we aim to overcome this data size limitation by training predictive models of protein expression on data from millions of synthetic constructs -- a data set several orders of magnitude larger than the number of genes in the genome. Specifically, we will create libraries of in vitro transcribed mRNA with targeted variation in the UTRs and CDS and will assay protein expression of each library member by performing high-throughput polysome profiling, ribosome profiling, and mRNA stability assays. We will then use neural network approaches to learn predictive models of the relationship between mRNA sequence and levels of protein production. We will apply our models to three applications of practical importance: first, we expect to uncover novel biology, for example identifying regulatory sequence elements and interactions between them. Second, we will validate our models through the de novo design and experimental testing of sequences that result in higher levels or protein production than any of the millions of randomly generated members of the original library or than the endogenous UTR sequences currently used in biotechnology. Such stable and highly translating mRNA constructs would be of particular value for the field or mRNA therapeutics. Third, we will predict the functional consequences of genetic variation in UTRs on protein production and we will validate these predictions experimentally. We are far from understanding which genetic variants compromise gene regulatory function in ways that may contribute to disease, making such a comprehensive and quantitative analysis of variants valuable.
mRNA的前导和后导非翻译区(UTRs)以及编码序列(CDS),

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georg Seelig其他文献

Georg Seelig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georg Seelig', 18)}}的其他基金

Engineering cell type-specific splicing regulation
工程细胞类型特异性剪接调控
  • 批准号:
    10633765
  • 财政年份:
    2023
  • 资助金额:
    $ 47.31万
  • 项目类别:
Joint receptor and protein expression immunophenotyping through split-pool barcoding
通过分池条形码进行联合受体和蛋白质表达免疫表型
  • 批准号:
    10625987
  • 财政年份:
    2021
  • 资助金额:
    $ 47.31万
  • 项目类别:
Joint receptor and protein expression immunophenotyping through split-pool barcoding
通过分池条形码进行联合受体和蛋白质表达免疫表型
  • 批准号:
    10375354
  • 财政年份:
    2021
  • 资助金额:
    $ 47.31万
  • 项目类别:
High-resolution spatial transcriptomics through light patterning
通过光图案化的高分辨率空间转录组学
  • 批准号:
    9886581
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
High-resolution spatial transcriptomics through light patterning
通过光图案化的高分辨率空间转录组学
  • 批准号:
    10341212
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
A massively parallel reporter assay for measuring chromatin effects on alternative splicing
用于测量染色质对选择性剪接的影响的大规模并行报告分析
  • 批准号:
    10161803
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
A massively parallel reporter assay for measuring chromatin effects on alternative splicing
用于测量染色质对选择性剪接的影响的大规模并行报告分析
  • 批准号:
    9977420
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
High-resolution spatial transcriptomics through light patterning
通过光图案化进行高分辨率空间转录组学
  • 批准号:
    10112854
  • 财政年份:
    2020
  • 资助金额:
    $ 47.31万
  • 项目类别:
Predictive Modeling of Alternative Splicing and Polyadenylation from Millions of Random Sequences
数百万随机序列的选择性剪接和聚腺苷酸化的预测模型
  • 批准号:
    9306648
  • 财政年份:
    2017
  • 资助金额:
    $ 47.31万
  • 项目类别:

相似海外基金

Impact of alternative polyadenylation of 3'-untranslated regions in the PI3K/AKT cascade on microRNA
PI3K/AKT 级联中 3-非翻译区的替代多聚腺苷酸化对 microRNA 的影响
  • 批准号:
    573541-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 47.31万
  • 项目类别:
    University Undergraduate Student Research Awards
How do untranslated regions of cannabinoid receptor type 1 mRNA determine receptor subcellular localisation and function?
1 型大麻素受体 mRNA 的非翻译区如何决定受体亚细胞定位和功能?
  • 批准号:
    2744317
  • 财政年份:
    2022
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Studentship
MICA:Synthetic untranslated regions for direct delivery of therapeutic mRNAs
MICA:用于直接递送治疗性 mRNA 的合成非翻译区
  • 批准号:
    MR/V010948/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Research Grant
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
  • 批准号:
    10019570
  • 财政年份:
    2019
  • 资助金额:
    $ 47.31万
  • 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
  • 批准号:
    10223370
  • 财政年份:
    2019
  • 资助金额:
    $ 47.31万
  • 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
  • 批准号:
    10455108
  • 财政年份:
    2019
  • 资助金额:
    $ 47.31万
  • 项目类别:
Synergistic microRNA-binding sites, and 3' untranslated regions: a dialogue of silence
协同的 microRNA 结合位点和 3 非翻译区:沉默的对话
  • 批准号:
    255762
  • 财政年份:
    2012
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Operating Grants
Analysis of long untranslated regions in Nipah virus genome
尼帕病毒基因组长非翻译区分析
  • 批准号:
    20790351
  • 财政年份:
    2008
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Search for mRNA elements involved in the compatibility between 5' untranslated regions and coding regions in chloroplast translation
寻找参与叶绿体翻译中 5 非翻译区和编码区之间兼容性的 mRNA 元件
  • 批准号:
    19370021
  • 财政年份:
    2007
  • 资助金额:
    $ 47.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Post-transcriptional Regulation of PPAR-g Expression by 5'-Untranslated Regions
5-非翻译区对 PPAR-g 表达的转录后调控
  • 批准号:
    7131841
  • 财政年份:
    2006
  • 资助金额:
    $ 47.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了