Cell Cycle-Mediated Optimization of Cartilage Tissue Development
细胞周期介导的软骨组织发育优化
基本信息
- 批准号:9896522
- 负责人:
- 金额:$ 13.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-19 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdultAgeAllograftingAmericanApplications GrantsArthroscopyAutologousBiologic DevelopmentBioreactorsCanis familiarisCartilageCell CycleCellsCellular biologyChondrocytesCiliaClinicalDataDefectDegenerative polyarthritisDevelopmentDiagnostic ImagingDirect CostsEngineeringExhibitsExtracellular MatrixFinancial costGenerationsHistologyHistopathologic GradeHumanHydrogelsImmunohistochemistryIn VitroIncidenceIndividualJoint repairJointsKnee jointLengthLesionMarrowMeasuresMechanicsMediatingMicroscopyModelingMonitorOutputPainPhenotypePopulationPreventionProceduresProductionPropertyProsthesisProtocols documentationQuality of lifeReporterResearchRoleStainsSynovial FluidTechnologyTestingThickTimeTissue EngineeringTissuesTolonium chlorideUnited States National Institutes of Healthbasecartilage developmentclinically relevantcost estimateeffective therapygait examinationimplantationin vivoinnovationmechanical propertiesnovelosteochondral tissuepromoterreal time monitoringrepairedscaffoldsocioeconomics
项目摘要
PROJECT SUMMARY
An estimated 27 million Americans age ≥25 have osteoarthritis (OA) and this number is projected to
escalate to more than 65 million by 2029 at a direct cost estimated at $28.6 billion. Reducing the incidence and
effects of OA through effective treatment of cartilage defects would be a significant socioeconomic benefit. As
the supply of suitable cartilage grafts is unable to meet clinical demand, the development of tissue engineered
osteochondral grafts with mechanically functional properties would have a significant clinical impact.
Examination of engineered cartilage tissues at a multi-scale level suggests local variable ECM content
at the single cell level, where cells, for example, exhibiting intense metachromatic staining for ECM are
juxtaposed to others with relatively little metachromatic staining. We speculate that this intrinsic cell-to-cell
variability in ECM production capacity undermines or limits the peak tissue properties attainable by the whole
cell population, and may also impact engineered cartilage integrative repair potential.
This proposal will test the following hypotheses: H1) Cell cycle priming leads to coordinated cell tissue
elaboration capacity, thereby expediting development and peak magnitude of functional tissue properties by
decreasing local spatial inhomogeneity in engineered cartilage derived from clinically-relevant chondrocytes.
H2) Cell cycle priming is mediated in part by primary cilia that increase in incidence post synchronization. H3)
Repair of full thickness osteochondral defects with engineered cartilage constructs derived from initially (cell
cycle) synchronized chondrocytes will be superior to non-synchronized (control) chondrocytes due to the
unprecedented acceleration of functional tissue development associated with cell cycle priming that leads to
cartilage grafts that better approximate the cartilage associated with clinical osteochondral allografts.
The corresponding aims will study human and canine chondrocytes in vitro (Specific Aim 1) and
engineered canine cartilage constructs in vivo with a full-thickness ostechondral focal defect repair model in
the dog (Specific Aim 2).
This NIH R21 application will explore the potential for cell cycle priming as a novel platform technology
for functional tissue engineering and generation of tissues with native mechanical properties in 6 weeks or
less. We will determine if the functional benefits of cell synchronization on 3D cartilage tissue formation are
derived from the reduction of cell-to-cell variability and homogenization of cell ECM output. While the concept
of cell synchronization is well-established in cell biology, its application for engineering cartilage, as
demonstrated by our preliminary data, represents an innovation.
项目摘要
估计有2700万美国人≥25岁患有骨关节炎(OA),这一数字预计为
到2029年,直接成本估计为286亿美元。减少事件和
OA通过有效治疗软骨缺陷的影响将是一个重大的社会经济益处。作为
合适的软骨移植物的供应无法满足临床需求,组织的发展
具有机械功能特性的骨软骨移植物将具有显着的临床影响。
在多尺度上对工程软骨组织的检查表明局部可变ECM含量
在单细胞水平上,例如,细胞在ECM中表现出强烈的正常染色为
与其他相对较少的实质性染色并置。我们推测这个内在的细胞到细胞
ECM生产能力的可变性破坏或限制了总体可实现的峰组织特性
细胞种群,还可能影响工程软骨的整合维修潜力。
该建议将检验以下假设:H1)细胞周期启动导致协调的细胞组织
详细说明能力,从而加快了功能组织特性的发展和峰值幅度
降低了源自临床上与软骨细胞的工程软骨的局部空间不均匀性。
H2)细胞周期启动部分是由原发性纤毛介导的,后者同步后炎症增加。 H3)
用最初衍生的工程软骨构建体修复全厚度骨软骨缺陷(细胞
循环)同步软骨细胞将优于非同步(对照)软骨细胞
与细胞周期启动相关的功能组织发育的空前加速,导致
软骨移植物可以更好地近似于与临床骨软骨外形相关的软骨。
相应的目标将在体外研究人类和犬软骨细胞(特定目标1)和
工程犬软骨在体内具有全厚度的Osthondral局灶性缺陷修复模型
狗(特定目标2)。
该NIH R21应用程序将探索作为一种新型平台技术的细胞周期启动的潜力
在6周内或
较少的。我们将确定细胞同步在3D软骨组织形成上的功能益处是否是
来自细胞间变异性的降低和细胞ECM输出均匀化的衍生得出。而这个概念
细胞同步在细胞生物学(其工程软骨的应用)中已经建立了良好的
通过我们的初步数据证明,代表了一种创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clark T. Hung其他文献
Clark T. Hung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clark T. Hung', 18)}}的其他基金
Cell Cycle-Mediated Optimization of Cartilage Tissue Development
细胞周期介导的软骨组织发育优化
- 批准号:
10274713 - 财政年份:2020
- 资助金额:
$ 13.71万 - 项目类别:
Incorporation of Dexamethasone Delivery within Engineered Cartilage
将地塞米松输送纳入工程软骨中
- 批准号:
9724359 - 财政年份:2016
- 资助金额:
$ 13.71万 - 项目类别:
Incorporation of Dexamethasone Delivery within Engineered Cartilage
将地塞米松输送纳入工程软骨中
- 批准号:
9045150 - 财政年份:2016
- 资助金额:
$ 13.71万 - 项目类别:
Electrotherapeutic strategies for connective tissue repair
结缔组织修复的电疗策略
- 批准号:
8319344 - 财政年份:2011
- 资助金额:
$ 13.71万 - 项目类别:
Electrotherapeutic strategies for connective tissue repair
结缔组织修复的电疗策略
- 批准号:
8206400 - 财政年份:2011
- 资助金额:
$ 13.71万 - 项目类别:
Electrotherapeutic strategies for connective tissue repair
结缔组织修复的电疗策略
- 批准号:
8912984 - 财政年份:2011
- 资助金额:
$ 13.71万 - 项目类别:
Electrotherapeutic strategies for connective tissue repair
结缔组织修复的电疗策略
- 批准号:
8517587 - 财政年份:2011
- 资助金额:
$ 13.71万 - 项目类别:
Electrotherapeutic strategies for connective tissue repair
结缔组织修复的电疗策略
- 批准号:
8715317 - 财政年份:2011
- 资助金额:
$ 13.71万 - 项目类别:
Chondrocyte Mechanotransduction Using Microfluidics
使用微流体进行软骨细胞机械转导
- 批准号:
7472336 - 财政年份:2006
- 资助金额:
$ 13.71万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 13.71万 - 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 13.71万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 13.71万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 13.71万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 13.71万 - 项目类别: