Methods for integrated analysis of multi-level omics data
多层次组学数据综合分析方法
基本信息
- 批准号:9897639
- 负责人:
- 金额:$ 41.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBig DataBiological MarkersBiological ModelsBiostatistical MethodsCellsClinicalClinical ManagementCodeCollaborationsCollectionComplexCouplingDataDevelopmentDiseaseElementsEtiologyEventExpression ProfilingFoundationsGenesGenetic Enhancer ElementGenomeGenomic medicineGenomicsGenotypeGoalsInflammatoryInstitutesInvestigationKnowledgeLinkage DisequilibriumMathematicsMeasuresMediatingMediationMedicineMentorsMethodsMolecularOutcomePerformancePhenotypePhysiologicalPrognostic MarkerProtein IsoformsProteinsRNARNA SplicingRegulatory ElementReportingResearchResearch PersonnelResourcesRoleStatistical MethodsStressStructureTaxonomyTestingTimeTissuesTranslatingTranslational ResearchUncertaintybaseclinically relevantcohortdata resourceexpectationgenetic associationgenetic elementgenome wide association studygenomic datahigh throughput technologyimprovedinnovationinsightinterdisciplinary collaborationinterestmultilevel analysisnovelpersonalized decisionprecision medicineprofessorresponse biomarkersimulationsoundstatisticsstructural genomicsstructured datasurvival outcometherapeutic targettraittranscriptometranscriptomics
项目摘要
Project Summary
Novel analytic paradigms allowing for fully integrated interrogation of independent genomics data resources
is expected to reveal substantial new knowledge regarding the mechanistic foundations of genetic associations.
In this proposal we aim to develop, evaluate and apply sound statistical methods for leveraging and integrat-
ing the vast amount of publicly available transcriptome and genomics resources to improve understanding of
the mechanistic relationships among genes and regulatory elements associated with complex traits. Ultimately,
methods for uncovering the molecular and physiological underpinnings of complex diseases will provide clin-
ically relevant impact toward development of novel prognostic markers and therapeutic targets.
The Specific Aims are to:
(1) Develop a likelihood-based framework for integrated analysis of genomic elements, expression pro-
files and phenotypes. An overarching challenge in this setting is that transcriptomics data, composed of
genotypes and expression profiles, and GWA data, composed of genotypes and complex traits, are only
generally available for independent cohorts. We propose combining these two data resources and framing
the analysis in terms of a missing data problem. The unobserved expression profiles in the GWA data are
treated as missing and an expectation-maximization (EM) approach is proposed. Methods for efficient
implementation and inference, as well as an alternative Bayesian MCMC approach, are also described.
(2) Extend the methods of Aim 1 for alternative data structures and types. The framework of Aim 1 will be
further developed to: (a) account for complex linkage disequilibrium (LD) structures within and across
genes; (b) address disparities across genotyping platforms; (c) provide for simultaneous investigation of
multiple cell and tissue compartments, multiple isoforms, and multiple genes and regulatory elements;
and (d) accommodate time-varying biomarker profiles and time-to-event outcomes.
(3) Apply and evaluate performance of the methods developed in Aims 1 and 2. In addition to fully vetting
the proposed methods and comparing to alternative strategies using extensive simulation studies, we will
further unravel and elucidate the mechanisms of gene and regulatory element control of complex traits
using multiple publicly-available reference transcriptome data resources, repeatedly measured biomarker
data arising from the GENE study, and clinical outcomes from the CRIC study (see Section C).
This application launches from an extensive, decade-long and highly productive trans-disciplinary collabora-
tion. Building on a strong research and mentoring record, the proposed research offers novel statistical research
addressing pressing challenges in precision medicine.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea S Foulkes其他文献
Andrea S Foulkes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea S Foulkes', 18)}}的其他基金
Statistical Methods in COVID-19/PASC Clinical Research
COVID-19/PASC 临床研究的统计方法
- 批准号:
10584243 - 财政年份:2023
- 资助金额:
$ 41.76万 - 项目类别:
Center for Suicide Research and Prevention - Methods Core
自杀研究和预防中心 - 方法核心
- 批准号:
10575950 - 财政年份:2023
- 资助金额:
$ 41.76万 - 项目类别:
Interactive Data Portals and Robust Analytic Tools to Wrap PASC Cohorts (iDRAW) OTA-21-015A
用于包装 PASC 队列的交互式数据门户和强大的分析工具 (iDRAW) OTA-21-015A
- 批准号:
10841987 - 财政年份:2021
- 资助金额:
$ 41.76万 - 项目类别:
Interactive Data Portals and Robust Analytic Tools to Wrap PASC Cohorts (iDRAW) OTA-21-015A
用于包装 PASC 队列的交互式数据门户和强大的分析工具 (iDRAW) OTA-21-015A
- 批准号:
10373610 - 财政年份:2021
- 资助金额:
$ 41.76万 - 项目类别:
Interactive Data Portals and Robust Analytic Tools to Wrap PASC Cohorts (iDRAW) OTA-21-015A
用于包装 PASC 队列的交互式数据门户和强大的分析工具 (iDRAW) OTA-21-015A
- 批准号:
10523261 - 财政年份:2021
- 资助金额:
$ 41.76万 - 项目类别:
Statistical methods for modeling multi-omic data
多组学数据建模的统计方法
- 批准号:
9441328 - 财政年份:2017
- 资助金额:
$ 41.76万 - 项目类别:
CCC for NHLBI Prevention and Early Treatment of Acute Lung Injury PETAL Network
CCC 用于 NHLBI 预防和早期治疗急性肺损伤 PETAL Network
- 批准号:
10394765 - 财政年份:2014
- 资助金额:
$ 41.76万 - 项目类别:
Methods for high-dimensional data in HIV/CVD research
HIV/CVD 研究中的高维数据方法
- 批准号:
8071406 - 财政年份:2011
- 资助金额:
$ 41.76万 - 项目类别:
Methods for high-dimensional data in HIV/CVD research
HIV/CVD 研究中的高维数据方法
- 批准号:
8606493 - 财政年份:2011
- 资助金额:
$ 41.76万 - 项目类别:
Methods for high-dimensional data in HIV/CVD research
HIV/CVD 研究中的高维数据方法
- 批准号:
8995000 - 财政年份:2011
- 资助金额:
$ 41.76万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 41.76万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 41.76万 - 项目类别:
Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 41.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 41.76万 - 项目类别:
Standard Grant
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 41.76万 - 项目类别:
Discovery Projects
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 41.76万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 41.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 41.76万 - 项目类别:
Discovery Projects
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 41.76万 - 项目类别:
EU-Funded
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
- 批准号:
10053966 - 财政年份:2023
- 资助金额:
$ 41.76万 - 项目类别:
Collaborative R&D














{{item.name}}会员




