Statistical methods for modeling multi-omic data
多组学数据建模的统计方法
基本信息
- 批准号:9441328
- 负责人:
- 金额:$ 45.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Research Enhancement AwardsAddressAtherosclerosisBig DataBiologicalBiological MarkersBiological ModelsBiometryBiostatistical MethodsCellsCharacteristicsClinical ManagementCodeCollaborationsCollectionComplexComputational ScienceDataData ScienceDevelopmentDiseaseEnvironmentEnvironmental Risk FactorEtiologyFoundationsGenesGeneticGenomicsGoalsInflammatoryInstitutionInterventionKnowledgeLeadLinkage DisequilibriumMeasuresMedicineMentorsMethodologyMethodsModelingMolecularMorbidity - disease rateNatural ImmunityNon-Insulin-Dependent Diabetes MellitusPatternPhysiologicalProcessPrognostic MarkerProteinsRegulationRegulator GenesRegulatory ElementResearchResearch PersonnelRestSepsisSolidSourceStatistical MethodsStimulusStressTestingTimeTissuesTranslational ResearchTraumaUnited States National Institutes of HealthWomanbig biomedical dataclinically relevantcollegedata resourceexperiencegenetic associationgenomic datahigher educationimprovedinsightinterdisciplinary collaborationlearning materialsmortalitynovelnovel therapeuticspersonalized decisionprecision medicineprofessorprogramsresponseresponse biomarkersimulationsoundtherapeutic developmenttherapeutic targettooltraittranscriptomeundergraduate studentyoung woman
项目摘要
Project Summary
Novel analytic paradigms allowing for a fully integrated interrogation of regulatory elements, protein-coding
genes, demographic characteristics and environmental factors on evoked and dynamic traits are essential for
providing new insight into the mechanistic underpinnings of genetic associations. In this proposal we aim
to develop, evaluate and apply sound statistical methods for leveraging and integrating the vast amount of
publicly available multi-omic data resources to improve understanding of the mechanistic relationships among
genes and regulatory elements associated with complex traits. As activation of innate immunity is a fundamen-
tal pathophysiological process in cardiometabolic disease, e.g., atherosclerosis and type 2 diabetes, as well as
complex inflammatory disorders, e.g., response to sepsis and trauma, our understanding of the genetic under-
pinnings of these evoked inflammatory biomarkers, provides clinically relevant impact toward development of
novel prognostic markers and therapeutic targets in complex diseases. Advancing knowledge of the molecular
and physiological underpinnings of complex diseases will deepen insight into disease etiology, while providing
opportunity to develop targeted interventions and lessen disease morbidity and mortality.
The Specific Aims are to: (1) Develop a novel statistical framework for inferential transcriptome association
analysis using reference data for rigorous interrogation of regulatory and gene-level underpinnings of dynamic
response(s) to stimulus. We will develop novel and precise estimation and hypothesis testing strategies to inves-
tigate and characterize the mechanistic foundations of genomic class-level associations with biological response
to inflammatory stress. (2) Extend the methodology of Aim 1 to incorporate repeatedly measured transcriptome
data, multiple expression patterns, and high linkage disequilibrium within genomic classes.. We will advance
the solid conceptual framework of Aim 1 to develop strategies for evaluating time varying transcriptome pro-
files as well as data on multiple cell and tissue types and several genes and regulatory elements. (3) Apply and
evaluate the methods of Aims 1 and 2 through leveraging multiple sources of layered -omics data, including
cell and tissue specific expression. In addition to fully vetting the proposed methods and comparing to existing
alternative strategies using extensive simulation studies, we will further unravel and elucidate the mechanisms
of gene and regulatory element control of induced response using multiple publicly-available reference tran-
scriptome data resources and repeatedly measured biomarker data arising from the GENE study.
In addition to supporting rigorous and novel statistical research at the forefront of precision medicine, this
NIH Academic Research Enhancement Award (AREA) Program (R15) application aims to meet the specific
NIH AREA objectives by offering a unique opportunity to expose and engage underrepresented undergradu-
ate students in STEM to biomedical big data science, while strengthening the research environment at Mount
Holyoke College (MHC), the world's longest standing institution of higher education for women. This applica-
tion launches from an extensive, decade-long and highly productive trans-disciplinary collaboration. Building
on a strong research and mentoring record, the proposed research offers novel statistical research addressing
pressing challenges in precision medicine, while offering an important and unique opportunity to engage young
women in cutting-edge biomedical big data research.
项目摘要
新的分析范式,允许对调控元件、蛋白质编码
基因、人口学特征和环境因素对诱发和动态性状的影响是必不可少的,
为遗传关联的机制基础提供了新的见解。在本提案中,我们的目标是
开发、评估和应用合理的统计方法,以利用和整合大量的
公开可用的多组学数据资源,以提高对
与复杂性状相关的基因和调控元件。因为先天免疫的激活是基础-
心脏代谢疾病中的病理生理过程,例如,动脉粥样硬化和2型糖尿病,以及
复杂的炎症性疾病,例如,对败血症和创伤的反应,我们对遗传的理解,
这些诱发的炎症生物标志物的精确定位,提供了临床相关的影响,
复杂疾病的新的预后标志物和治疗靶点。提高分子水平
复杂疾病的生理学基础将加深对疾病病因学的了解,
有机会制定有针对性的干预措施,减少疾病发病率和死亡率。
具体目标是:(1)建立一个新的统计框架,用于推断转录组关联
使用参考数据进行分析,以严格询问动态的调控和基因水平基础
对刺激的反应。我们将开发新的和精确的估计和假设检验策略,以投资-
量化和表征基因组类别水平与生物学反应相关性的机制基础
来缓解精神压力(2)扩展目标1的方法,以纳入重复测量的转录组
数据,多种表达模式,以及基因组类别内的高度连锁不平衡。我们将推进
目标1的坚实的概念框架,以制定评估时变转录组前体的策略,
文件以及关于多种细胞和组织类型以及几种基因和调控元件的数据。(3)应用和
通过利用分层组学数据的多个来源,评估目标1和2的方法,包括
细胞和组织特异性表达。除了全面审查拟议的方法并与现有的方法进行比较外,
替代策略使用广泛的模拟研究,我们将进一步解开和阐明的机制
基因和调控元件控制的诱导反应,使用多种公众可获得的参考跨
scriptome数据资源和重复测量的生物标志物数据来自GENE研究。
除了支持精确医学前沿的严谨和新颖的统计研究外,
NIH学术研究增强奖(AREA)计划(R15)申请旨在满足
通过提供一个独特的机会,暴露和参与代表性不足的本科生,
让STEM的学生学习生物医学大数据科学,同时加强芒特的研究环境。
霍利奥克学院(MHC)是世界上历史最悠久的女子高等教育机构。本申请-
概念是从一个广泛的,长达十年的,富有成效的跨学科合作中推出的。建筑
在一个强大的研究和指导记录,拟议的研究提供了新的统计研究,解决
精准医疗面临的紧迫挑战,同时提供了一个重要而独特的机会,
前沿生物医学大数据研究中的女性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea S Foulkes其他文献
Andrea S Foulkes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea S Foulkes', 18)}}的其他基金
Statistical Methods in COVID-19/PASC Clinical Research
COVID-19/PASC 临床研究的统计方法
- 批准号:
10584243 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Center for Suicide Research and Prevention - Methods Core
自杀研究和预防中心 - 方法核心
- 批准号:
10575950 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Interactive Data Portals and Robust Analytic Tools to Wrap PASC Cohorts (iDRAW) OTA-21-015A
用于包装 PASC 队列的交互式数据门户和强大的分析工具 (iDRAW) OTA-21-015A
- 批准号:
10841987 - 财政年份:2021
- 资助金额:
$ 45.28万 - 项目类别:
Interactive Data Portals and Robust Analytic Tools to Wrap PASC Cohorts (iDRAW) OTA-21-015A
用于包装 PASC 队列的交互式数据门户和强大的分析工具 (iDRAW) OTA-21-015A
- 批准号:
10373610 - 财政年份:2021
- 资助金额:
$ 45.28万 - 项目类别:
Interactive Data Portals and Robust Analytic Tools to Wrap PASC Cohorts (iDRAW) OTA-21-015A
用于包装 PASC 队列的交互式数据门户和强大的分析工具 (iDRAW) OTA-21-015A
- 批准号:
10523261 - 财政年份:2021
- 资助金额:
$ 45.28万 - 项目类别:
Methods for integrated analysis of multi-level omics data
多层次组学数据综合分析方法
- 批准号:
9897639 - 财政年份:2018
- 资助金额:
$ 45.28万 - 项目类别:
CCC for NHLBI Prevention and Early Treatment of Acute Lung Injury PETAL Network
CCC 用于 NHLBI 预防和早期治疗急性肺损伤 PETAL Network
- 批准号:
10394765 - 财政年份:2014
- 资助金额:
$ 45.28万 - 项目类别:
Methods for high-dimensional data in HIV/CVD research
HIV/CVD 研究中的高维数据方法
- 批准号:
8071406 - 财政年份:2011
- 资助金额:
$ 45.28万 - 项目类别:
Methods for high-dimensional data in HIV/CVD research
HIV/CVD 研究中的高维数据方法
- 批准号:
8606493 - 财政年份:2011
- 资助金额:
$ 45.28万 - 项目类别:
Methods for high-dimensional data in HIV/CVD research
HIV/CVD 研究中的高维数据方法
- 批准号:
8995000 - 财政年份:2011
- 资助金额:
$ 45.28万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Research Grant














{{item.name}}会员




