Genetic mechanisms controlling the visual pathway to the central complex of the Drosophila brain
控制果蝇大脑中央复合体视觉通路的遗传机制
基本信息
- 批准号:9896874
- 负责人:
- 金额:$ 32.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2022-03-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAnatomyAnteriorAntsAxonBeesBehaviorBindingBiological ModelsBirthBirth OrderBrainCandidate Disease GeneCell CommunicationCellsCharacteristicsComplexDataDevelopmentDrosophila genusElementsExhibitsEyeGene ExpressionGenesGeneticGenetic MarkersGenetic studyHumanImageIndividualInsectaInterneuronsKnock-outLibrariesLocationLocomotionMapsModelingMolecularMolecular GeneticsMonitorMusNervous system structureNeuronsOptic LobeOpticsPathway interactionsPatternPerceptionPhenotypePlayProcessPropertyRNA InterferenceRecording of previous eventsRegulator GenesReporterResearchRoleSemaphorinsShapesSorting - Cell MovementSpecific qualifier valueStereotypingStructureSynapsesSystemTechniquesTestingTherapeuticTimeVisionVisualVisual PathwaysWalkingWorkbasebrain circuitrycell typedifferential expressionembryonic stem cellexperimental studyflygenetic analysisknock-downlocomotor controllocustmind controlneuroblastneuronal circuitryorientation selectivitypolarized lightpreservationprogenitorpublic health relevanceresponsesensory stimulusspatial relationshipstem cellstime intervaltooltranscriptometranscriptome sequencingtwo-photonvirtualvisual informationvisual stimulus
项目摘要
DESCRIPTION (provided by applicant): The studies of this application ask how gene expression controls neuronal connectivity and, thereby, brain function. This question is of general importance if one wants to understand, and (therapeutically) manipulate brain circuitry. We use the model system Drosophila, where virtually every gene can be targeted for knock-out or activation in a cell type selective manner Drosophila also offers the advantage that its brain i composed of a relatively small number of stereotyped neuronal lineages, groups of neurons descended from individual embryonic stem cells, called neuroblasts. During the course of its proliferation, each neuroblast expresses characteristic sets of regulatory genes. These genes control the differentiation of the neurons born from that particular neuroblast during a particular
time interval. Through this mechanism, a lineage, or smaller subdivision of a lineage called sublineage, develops into a specific class of neurons which share common wiring properties, including the projection of their axons, branching pattern, and placement of synapses. Several discrete neuronal classes/lineages are put together into a neuronal circuit. We have identified a circuit, called the anterior visual pathway (AVP), which conducts input form the eye to a brain center, the central complex, known to process and store visual information in order to control fly locomotion (walking, flight). The central part of this circuit is formed by three lineages, whose neurons form several classes of highly ordered parallel and sequential elements. In our first aim we will investigate the function of the neuronal classes of the AVP, by recording their activity in
response to defined visual stimuli. We will also demonstrate experimentally that these classes of neurons are directly connected by synapses. The second aim addresses the question how the developmental history of a neuron (time of birth, placement within the spatial framework of the developing brain) relates to its later connectivity within the AVP circuit. Furthermore, by genetically ablating specific classes of AVP neurons and monitoring the response of their normal synaptic partners, we will obtain important clues towards the role of specific cell interactions ordering connectivity. Thirdly, using high throughput RNAseq, we will analyze the complete assortment of genes (transcriptome) expressed differentially in two particular AVP sublineages, R3 and R2. These two classes are distinguished from each other by very few structural criteria, and we will screen for and then analyze genes responsible for their differences in wiring. We expect to identify genes which play a general role in controlling pathway choices and connectivity in the nervous system.
描述(由申请人提供):本申请的研究询问基因表达如何控制神经元连接,从而控制脑功能。这个问题是普遍的重要性,如果一个人想了解,并(治疗)操纵大脑回路。我们使用果蝇模型系统,其中几乎每个基因都可以以细胞类型选择性方式被靶向敲除或激活。果蝇还具有这样的优势:它的大脑由相对少量的定型神经元谱系组成,即神经元群体。来自单个胚胎干细胞(称为成神经细胞)的细胞。在其增殖过程中,每一个神经母细胞表达的调控基因的特征集。这些基因控制着神经元的分化,这些神经元是在特定的时间段内从特定的神经母细胞中产生的。
时间间隔通过这种机制,一个谱系,或一个谱系的更小的细分称为亚谱系,发展成一类特定的神经元,这些神经元具有共同的布线特性,包括轴突的投射,分支模式和突触的放置。几个离散的神经元类/谱系被放在一起成为一个神经元回路。我们已经确定了一个电路,称为前视觉通路(AVP),它将输入从眼睛传导到大脑中心,即中央复合体,已知用于处理和存储视觉信息以控制苍蝇运动(行走,飞行)。这个回路的中心部分由三个谱系形成,其神经元形成几类高度有序的并行和顺序元件。 在我们的第一个目标中,我们将通过记录AVP神经元类的活动来研究AVP神经元类的功能。
对特定视觉刺激的反应。我们还将通过实验证明,这些神经元类别是由突触直接连接的。 第二个目标是解决一个神经元的发育历史(出生时间,在发育中的大脑的空间框架内的位置)如何与其后来在AVP回路内的连接性相关的问题。此外,通过基因消融特定类别的AVP神经元,并监测其正常突触伙伴的反应,我们将获得重要的线索,对特定的细胞相互作用有序连接的作用。 第三,使用高通量RNAseq,我们将分析在两个特定AVP亚系R3和R2中差异表达的基因(转录组)的完整分类。这两个类别之间的区别在于很少的结构标准,我们将筛选并分析负责它们布线差异的基因。我们希望能够鉴定出在控制神经系统中通路选择和连接方面发挥一般作用的基因。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of the anterior visual input pathway to the Drosophila central complex.
果蝇中央复合体的前视觉输入通路的发育。
- DOI:10.1002/cne.24277
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Lovick,JenniferK;Omoto,JaisonJ;Ngo,KathyT;Hartenstein,Volker
- 通讯作者:Hartenstein,Volker
Connecting the nervous and the immune systems in evolution.
- DOI:10.1038/s42003-018-0070-2
- 发表时间:2018
- 期刊:
- 影响因子:5.9
- 作者:Hartenstein V;Giangrande A
- 通讯作者:Giangrande A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VOLKER HARTENSTEIN其他文献
VOLKER HARTENSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VOLKER HARTENSTEIN', 18)}}的其他基金
Genetic mechanisms controlling the visual pathway to the central complex of the Drosophila brain
控制果蝇大脑中央复合体视觉通路的遗传机制
- 批准号:
9252602 - 财政年份:2016
- 资助金额:
$ 32.97万 - 项目类别:
Genetic Control of Intestinal Stem Cells in the Drosophila Hindgut
果蝇后肠肠干细胞的遗传控制
- 批准号:
7895667 - 财政年份:2009
- 资助金额:
$ 32.97万 - 项目类别:
Developmental and functional analysis of neural circuits controlling navigation in Drosophila
果蝇控制导航的神经回路的发育和功能分析
- 批准号:
10663847 - 财政年份:2006
- 资助金额:
$ 32.97万 - 项目类别:
3D Digital Modeling of the Developing Drosophila Brain
发育中的果蝇大脑的 3D 数字建模
- 批准号:
7783516 - 财政年份:2006
- 资助金额:
$ 32.97万 - 项目类别:
Lineage-associated wiring properties of Drosphila brain neurons
果蝇脑神经元的谱系相关布线特性
- 批准号:
9094699 - 财政年份:2006
- 资助金额:
$ 32.97万 - 项目类别:
3D Digital Modeling of the Developing Drosophila Brain
发育中的果蝇大脑的 3D 数字建模
- 批准号:
8013786 - 财政年份:2006
- 资助金额:
$ 32.97万 - 项目类别:
3D Digital Modeling of the Developing Drosophila Brain
发育中的果蝇大脑的 3D 数字建模
- 批准号:
8604636 - 财政年份:2006
- 资助金额:
$ 32.97万 - 项目类别:
Developmental and functional analysis of neural circuits controlling navigation in Drosophila
果蝇控制导航的神经回路的发育和功能分析
- 批准号:
10444807 - 财政年份:2006
- 资助金额:
$ 32.97万 - 项目类别:
3D Digital Modeling of the Developing Drosophila Brain
发育中的果蝇大脑的 3D 数字建模
- 批准号:
8417738 - 财政年份:2006
- 资助金额:
$ 32.97万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 32.97万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 32.97万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 32.97万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别: