Developmental and functional analysis of neural circuits controlling navigation in Drosophila
果蝇控制导航的神经回路的发育和功能分析
基本信息
- 批准号:10444807
- 负责人:
- 金额:$ 53.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-02-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAnimal BehaviorAnimalsAnteriorBackBehaviorBehavior ControlBehavioralBiological MetamorphosisBrainComplexCuesDataDevelopmentDevicesDrosophila genusElementsEnvironmentFiberFoodFundingGenesGeneticGenetic ScreeningGoalsGrantHeadHumanImageInferiorInfrastructureInterneuronsJointsLarvaLateralLegLightLobeMapsMediatingMedicalMicroscopicModelingMotorMuscleMushroom BodiesNerveNeuritesNeurobiologyNeuronsNeuropilOdorsOrganOutputPartner in relationshipPatternPeristalsisPlug-inPostureProblem behaviorProcessPropertyRecurrenceResearchResolutionRoleRunningSamplingSensorySmell PerceptionSourceSynapsesSystemTestingTherapeuticTransgenic OrganismsTreesUpdateVisionVisualWingWorkbasebrain circuitryconnectomedigitalflexibilityflyinterestlarval controlmembermotor controlmultimodalityneural circuitoptogeneticsreceptorreconstructionrelating to nervous systemresponsesensory inputsensory stimulussource guidesspatial memorytooltool developmenttwo-photonvirtualvisual mapway finding
项目摘要
Summary
One of the most pressing research goals in neurobiology is to understand how brain circuits develop, and how
these circuits control the behavior of an animal. This problem is of general importance if one wants to
understand, and (therapeutically) manipulate, brain circuitry in a medical setting. A prerequisite to attain this
goal is (1) the detailed mapping of complete neuron assemblies that embody specific circuits, and (2) the
availability of precision tools for functional studies. Both of these conditions are now met for Drosophila.
Complete connectomes (digital maps that contain all brain neurons and their synaptic connections) exist for
both the larval stage (funded in part by this grant in previous years) and the adult. And in addition, genetic tools
have been developed that allow one to manipulate (that is, silence, or activate) virtually every neuron, or at
least neuron class, and test for the effect on specific behaviors that one is interested in. The strategy then is to
extract from the connectome a wiring diagram of a specific circuit, develop hypotheses of how the different
elements in the circuit interact, and use genetic tools to test these hypotheses.
Studies of this proposal focus on a Drosophila brain circuit involved in navigation. Animals navigate in
response to sensory stimuli in order to find food and mating partners, or avoid danger. Brain centers controlling
navigation require processed, multimodal sensory input (smells, visual cues) which are integrated with
proprioceptive input (feed back from muscles, joints etc) to calculate the commands required to steer the
animal in the right direction. Our analysis of the larval connectome highlights a brain center called the lateral
accessory lobe (LAL) as a focus of interest. We have identified the relevant LAL neuron classes and their
connections, and are in the process to systematically screen for genetic constructs with which we can target
these neuron classes to do functional studies. Larvae have a simple, highly quantifiable navigation behavior
that allows them to find a food source (by odor) or avoid light. We will analyze how the LAL controls motor
circuits that carry out this behavior.
The second and third objective of the proposal is to study how the larval LAL neurons become
modified and incorporated in the LAL of the adult. Adult flies have a new set of organs (e.g., wings, legs) with
which to move, and receptors with which to sense; but according to our initial data, the larval neurons remain
and have to adapt to cope with their new input and output. Using the connectome of the adult brain and our
genetic tools we intend to identify the descendants of larval neurons in the LAL, and to address their function in
adult navigation.
概括
神经生物学中最紧迫的研究目标之一是了解脑电路的发展方式,以及如何
这些电路控制动物的行为。如果一个人想
在医疗环境中理解和(治疗)操纵脑电路。实现这一目标的先决条件
目标是(1)体现特定电路的完整神经元组件的详细映射,以及(2)
用于功能研究的精确工具的可用性。现在,果蝇都满足了这两种情况。
存在完整的连接组(包含所有脑神经元及其突触连接的数字图)
幼虫阶段(部分由往年的赠款资助)和成人。此外,遗传工具
已经开发了一种允许一个人(即,沉默或激活)几乎每个神经元或在
至少神经元类,并测试对一个人感兴趣的特定行为的影响。然后
从连接组提取特定电路的接线图,提出假设的假设
电路中的元素相互作用,并使用遗传工具来检验这些假设。
该提案的研究集中在涉及导航的果蝇脑电路上。动物驶入
对感官刺激的反应,以找到食物和交配伴侣,或避免危险。大脑中心控制
导航需要与之整合的经过处理的多峰感觉输入(气味,视觉提示)
本体感受的输入(从肌肉,关节等回馈)以计算转向所需的命令
动物朝正确的方向。我们对幼虫连接组的分析突出了一个称为侧向的大脑中心
附件叶(LAL)作为感兴趣的重点。我们已经确定了相关的LAL神经元及其
连接,并且正在系统地筛选我们可以针对的遗传结构
这些神经元类进行功能研究。幼虫具有简单,高度可量化的导航行为
这使他们可以找到食物来源(气味)或避免光。我们将分析LAL如何控制电动机
执行此行为的电路。
该提案的第二和第三目标是研究幼虫LAL神经元如何变成
修改并纳入成人的lal。成人苍蝇有一套新的器官(例如,翅膀,腿)
要移动的东西,以及可以感知的受体;但是根据我们的最初数据,幼虫神经元仍然存在
并且必须适应应对其新输入和输出。使用成人大脑和我们的连接组
我们打算确定LAL中幼虫神经元的后代,并解决其功能
成人导航。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VOLKER HARTENSTEIN其他文献
VOLKER HARTENSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VOLKER HARTENSTEIN', 18)}}的其他基金
Genetic mechanisms controlling the visual pathway to the central complex of the Drosophila brain
控制果蝇大脑中央复合体视觉通路的遗传机制
- 批准号:
9252602 - 财政年份:2016
- 资助金额:
$ 53.37万 - 项目类别:
Genetic mechanisms controlling the visual pathway to the central complex of the Drosophila brain
控制果蝇大脑中央复合体视觉通路的遗传机制
- 批准号:
9896874 - 财政年份:2016
- 资助金额:
$ 53.37万 - 项目类别:
Genetic Control of Intestinal Stem Cells in the Drosophila Hindgut
果蝇后肠肠干细胞的遗传控制
- 批准号:
7895667 - 财政年份:2009
- 资助金额:
$ 53.37万 - 项目类别:
Developmental and functional analysis of neural circuits controlling navigation in Drosophila
果蝇控制导航的神经回路的发育和功能分析
- 批准号:
10663847 - 财政年份:2006
- 资助金额:
$ 53.37万 - 项目类别:
3D Digital Modeling of the Developing Drosophila Brain
发育中的果蝇大脑的 3D 数字建模
- 批准号:
7783516 - 财政年份:2006
- 资助金额:
$ 53.37万 - 项目类别:
Lineage-associated wiring properties of Drosphila brain neurons
果蝇脑神经元的谱系相关布线特性
- 批准号:
9094699 - 财政年份:2006
- 资助金额:
$ 53.37万 - 项目类别:
3D Digital Modeling of the Developing Drosophila Brain
发育中的果蝇大脑的 3D 数字建模
- 批准号:
8013786 - 财政年份:2006
- 资助金额:
$ 53.37万 - 项目类别:
3D Digital Modeling of the Developing Drosophila Brain
发育中的果蝇大脑的 3D 数字建模
- 批准号:
8604636 - 财政年份:2006
- 资助金额:
$ 53.37万 - 项目类别:
3D Digital Modeling of the Developing Drosophila Brain
发育中的果蝇大脑的 3D 数字建模
- 批准号:
8417738 - 财政年份:2006
- 资助金额:
$ 53.37万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 53.37万 - 项目类别:
The impact of early life opioid exposure on the molecular and functional trajectories of septal cell types
生命早期阿片类药物暴露对隔膜细胞类型分子和功能轨迹的影响
- 批准号:
10775154 - 财政年份:2023
- 资助金额:
$ 53.37万 - 项目类别:
Investigational WNT-pathway modulators for the treatment and prevention of drug-resistant seizures
用于治疗和预防耐药性癫痫发作的研究性 WNT 通路调节剂
- 批准号:
10725450 - 财政年份:2023
- 资助金额:
$ 53.37万 - 项目类别:
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 53.37万 - 项目类别: