Data Coordinating Center for the NICHD Neonatal Research Network (U24)
NICHD 新生儿研究网络数据协调中心 (U24)
基本信息
- 批准号:9898399
- 负责人:
- 金额:$ 670万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBioinformaticsBiometryClinical ResearchClinical TrialsCollaborationsCommunicationCustomDataData AnalysesData CollectionData Coordinating CenterData Management ResourcesData ReportingDevelopmentEnsureExhibitsFeasibility StudiesGoalsHuman ResourcesInfrastructureInstitutionInstitutional Review BoardsKnowledgeLeadLeadershipLettersLogisticsMasksMedicineMissionMonitorMulticenter Neonatal Research NetworkMulticenter StudiesNational Institute of Child Health and Human DevelopmentNeonatalNetwork InfrastructureNewborn InfantPerformancePerinatalPlayPopulationPrincipal InvestigatorProcessProductivityProtocols documentationPublicationsQuality ControlRecording of previous eventsReportingResearchResearch DesignResearch PersonnelResearch PriorityResearch SupportResourcesRoleRunningSafetyServicesSiteStandardizationStatistical Data InterpretationStatistical MethodsStructureSystemTechnology TransferTimeTrainingTreatment EfficacyWorkclinical centerclinical practicedata managementdata qualitydata sharingdesignelectronic dataevidence baseexperienceflexibilityhealth economicshuman subjectinnovationinteroperabilitymeetingsmultidisciplinaryneonatal careparticipant safetyprogramsquality assurancerandomized trialsafety studysuccesssymposiumtooltreatment strategytrial design
项目摘要
Project Summary
Critical and persistent gaps in the evidence base for neonatal medicine require innovative and rigorous
multicenter studies to address them. The NICHD Neonatal Research Network (NRN) investigates the safety
and efficacy of treatment and management strategies for newborn infants. There is a crucial need for an
independent Data Coordinating Center (DCC) that can provide high-quality and impartial biostatistical expertise
to help the NRN target its resources and optimize its scientific impact by (a) helping the NRN identify research
topics of high priority, (b) providing objective statistical expertise for the design and analyses of rigorous and
feasible studies (especially masked randomized trials and interim monitoring thereof), (c) developing efficient
processes and systems for effective use of limited resources, (d) ensuring standardization of study design,
development, data collection, and analyses, and (e) dissemination of study results. RTI has been the DCC for
the NRN since 1998 and proposes to continue in this role for the next 5 years. We will maximize NRN scientific
productivity by (1) enhancing the scientific rigor of the Network with innovative trial designs and statistical
methods that address the unique challenges in neonatal research; (2) optimizing productivity by providing
flexible and efficient data and study management, and promoting data sharing, integration and harmonization;
(3) protecting participant safety and study integrity through reports to the Data Safety and Monitoring
Committee; (4) providing timely data analysis, collaborating with investigators on all NRN studies and
publications; (5) leveraging the NRN infrastructure and data for external partnerships that support and amplify
Network scientific goals; and (6) providing the logistical, communications, and regulatory support necessary to
run an efficient and productive multicenter clinical research network. Dr. Abhik Das, the proposed DCC PI, has
extensive experience in neonatal clinical studies, leading the NRN DCC for the past 12 years. He will be
assisted by Alternate PIs Drs. Marie Gantz and Carla Bann and staff with significant NRN experience. Informed
by our past accomplishments, we will support continued success of the NRN in advancing evidence-based
neonatal care. This application has unique strengths to help advance the NRN research agenda: (1) a highly
qualified and motivated PI and staff with in-depth knowledge and experience in neonatal research (including
existing NRN data and active/planned studies), enabling seamless continuation of NRN research without
additional training or resources; (2) proven scientific productivity, documented by the quality and quantity of
NRN studies and publications supported by RTI that have changed clinical practice; (3) a state-of-the-art
infrastructure of tools, processes, and systems that are flexible and customized to the needs of the NRN; (4)
multidisciplinary experts who can collaborate with NRN Investigators to realize research goals; (5) robust data
capture and management systems customized for the NRN that ensure data quality; and (6) an administrative
structure providing maximum staffing flexibility to respond quickly to changing NRN needs.
项目摘要
新生儿医学证据基础中的关键和持续差距需要创新和严格的
多中心研究来解决这些问题。NICHD新生儿研究网络(NRN)调查了
以及新生儿治疗和管理策略的有效性。有一个至关重要的需要,
独立的数据协调中心(DCC),可提供高质量和公正的生物统计专业知识
通过以下方式帮助NRN瞄准其资源并优化其科学影响:(a)帮助NRN确定研究
(B)提供客观的统计专门知识,以便设计和分析严格和
可行性研究(特别是盲法随机试验及其中期监测),(c)开发有效的
有效利用有限资源的流程和系统,(d)确保研究设计的标准化,
开发、数据收集和分析,以及(e)传播研究结果。RTI一直是DCC,
NRN自1998年以来,并建议在未来5年继续发挥这一作用。我们将最大限度地提高NRN科学
通过(1)通过创新的试验设计和统计学方法提高网络的科学严谨性,
解决新生儿研究中独特挑战的方法;(2)通过提供
灵活高效的数据和研究管理,促进数据共享、整合和协调;
(3)通过向数据安全和监查部门报告,保护参与者安全和研究完整性
委员会;(4)提供及时的数据分析,与所有NRN研究的研究人员合作,
(5)利用NRN基础设施和数据建立外部伙伴关系,
网络科学目标;(6)提供必要的后勤,通信和监管支持,
运行一个高效和富有成效的多中心临床研究网络。建议的DCC PI Abhik Das博士
在新生儿临床研究方面拥有丰富的经验,在过去的12年中领导了NRN DCC。他将
由候补PI玛丽·巴茨和卡拉班恩博士以及具有丰富NRN经验的工作人员协助。知情
根据我们过去的成就,我们将支持NRN在推进循证医学方面继续取得成功
新生儿护理该应用程序具有独特的优势,有助于推进NRN的研究议程:(1)高度
合格和积极的PI和工作人员在新生儿研究方面具有深入的知识和经验(包括
现有的NRN数据和正在进行的/计划中的研究),使NRN研究能够无缝地继续下去,
额外的培训或资源;(2)经证明的科学生产力,以质量和数量记录
RTI支持的NRN研究和出版物改变了临床实践;(3)最先进的
(4)工具、流程和系统的基础设施,这些基础设施是灵活的,并根据NRN的需求定制;
能够与NRN研究人员合作实现研究目标的多学科专家;(5)可靠的数据
为NRN定制的捕获和管理系统,以确保数据质量;以及(6)管理
提供最大的人员配置灵活性的结构,以快速响应不断变化的NRN需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhik Das其他文献
Abhik Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abhik Das', 18)}}的其他基金
Neonatal Research Network Data Coordinating Center (DCC) 2023-2028
新生儿研究网络数据协调中心 (DCC) 2023-2028
- 批准号:
10879205 - 财政年份:2023
- 资助金额:
$ 670万 - 项目类别:
Data Coordinating Center (DCC) for the Neonatal Opioid Withdrawal Syndrome Pharmacological Treatments Comparative Effectiveness Trial (NOWS PhaCET)
数据协调中心 (DCC) 新生儿阿片类药物戒断综合征药物治疗比较有效性试验 (NOWS PhaCET)
- 批准号:
10491217 - 财政年份:2021
- 资助金额:
$ 670万 - 项目类别:
Data Coordinating Center (DCC) for the Neonatal Opioid Withdrawal Syndrome Pharmacological Treatments Comparative Effectiveness Trial (NOWS PhaCET)
数据协调中心 (DCC) 新生儿阿片类药物戒断综合征药物治疗比较有效性试验 (NOWS PhaCET)
- 批准号:
10378283 - 财政年份:2021
- 资助金额:
$ 670万 - 项目类别:
Data Coordinating Center (DCC) for the Neonatal Opioid Withdrawal Syndrome Pharmacological Treatments Comparative Effectiveness Trial (NOWS PhaCET)
数据协调中心 (DCC) 新生儿阿片类药物戒断综合征药物治疗比较有效性试验 (NOWS PhaCET)
- 批准号:
10678679 - 财政年份:2021
- 资助金额:
$ 670万 - 项目类别:
Archiving and Documenting Data from the NICHD Neonatal Research Network
归档和记录来自 NICHD 新生儿研究网络的数据
- 批准号:
9803847 - 财政年份:2019
- 资助金额:
$ 670万 - 项目类别:
Data Coordinating Center for the NICHD Neonatal Research Network (U24)
NICHD 新生儿研究网络数据协调中心 (U24)
- 批准号:
10375431 - 财政年份:2018
- 资助金额:
$ 670万 - 项目类别:
Data Coordinating Center for the NICHD Neonatal Research Network (U24)
NICHD 新生儿研究网络数据协调中心 (U24)
- 批准号:
9983354 - 财政年份:2018
- 资助金额:
$ 670万 - 项目类别:
Transfusion of Prematurity Early School Age Follow-up (TOP 5) DCC
早产儿输血早期学龄随访(TOP 5)DCC
- 批准号:
10021687 - 财政年份:2018
- 资助金额:
$ 670万 - 项目类别:
Transfusion of Prematurity Early School Age Follow-up (TOP 5) DCC
早产儿输血早期学龄随访(TOP 5)DCC
- 批准号:
10247622 - 财政年份:2018
- 资助金额:
$ 670万 - 项目类别:
Neonatal Research Network Data Coordinating Center (DCC) 2023-2028
新生儿研究网络数据协调中心 (DCC) 2023-2028
- 批准号:
10833754 - 财政年份:2018
- 资助金额:
$ 670万 - 项目类别:
相似海外基金
Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
- 批准号:
2421267 - 财政年份:2024
- 资助金额:
$ 670万 - 项目类别:
Standard Grant
Conference: The 9th Workshop on Biostatistics and Bioinformatics
会议:第九届生物统计与生物信息学研讨会
- 批准号:
2409876 - 财政年份:2024
- 资助金额:
$ 670万 - 项目类别:
Standard Grant
Open Access Block Award 2024 - EMBL - European Bioinformatics Institute
2024 年开放获取区块奖 - EMBL - 欧洲生物信息学研究所
- 批准号:
EP/Z532678/1 - 财政年份:2024
- 资助金额:
$ 670万 - 项目类别:
Research Grant
PAML 5: A friendly and powerful bioinformatics resource for phylogenomics
PAML 5:用于系统基因组学的友好且强大的生物信息学资源
- 批准号:
BB/X018571/1 - 财政年份:2024
- 资助金额:
$ 670万 - 项目类别:
Research Grant
PDB Management by The Research Collaboratory for Structural Bioinformatics
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
2321666 - 财政年份:2024
- 资助金额:
$ 670万 - 项目类别:
Cooperative Agreement
Planning Proposal: CREST Center in Bioinformatics
规划方案:CREST生物信息学中心
- 批准号:
2334642 - 财政年份:2023
- 资助金额:
$ 670万 - 项目类别:
Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 670万 - 项目类别:
Continuing Grant
Building a Bioinformatics Ecosystem for Agri-Ecologists
为农业生态学家构建生物信息学生态系统
- 批准号:
BB/X018768/1 - 财政年份:2023
- 资助金额:
$ 670万 - 项目类别:
Research Grant
Integrative viral genomics and bioinformatics platform
综合病毒基因组学和生物信息学平台
- 批准号:
MC_UU_00034/5 - 财政年份:2023
- 资助金额:
$ 670万 - 项目类别:
Intramural